Have we reached the bottom already?

Having reached the bottom of a market can actually be a very good thing.  It means anyone who wants a set of RepRap parts can have them for as little as the market will bear.  Right now there are lots of options for someone who wants to get involved in building a RepRap/RepStrap.  You can get a MakerBot, RapMan, ShaperCube, Profound Devices, Isaac Mendel, or pick up a large selection of parts on eBay.

As an owner of a MakerBot, I’m far more likely to want to print up my own RepRap parts than buy them.  However, each of Spacexula‘s Mendel print sets would probably take me 2-3 hours of print time plus about 15 minutes of human intervention/monitoring.1  I would of course also print up parts for any friends/family who wanted parts. 2  I’d be willing to do this to create my own Mendel, but the idea of spending three weeks3 , say $30 in plastic4 , and about six broken up over that three weeks fiddling with stuff5 makes me wonder if there’s a better way to make $300.00.

Setting that aside, I wonder where the bottom of the RepRap parts market is heading?  Spacexula has suggested around $250 or so based upon the price for lasercut parts.  I suspect the price of printed parts will always be higher than the price for lasercut or molded parts – because of the time involved.  Lasercut parts can be cranked out as quickly  as a lasercan cut. 6  Molded parts can be churned out as quickly as the poured material can be dried.  Plus, no matter how nice lasercut/molded parts are – you still have a RepStrap, not a true RepRap.  Assuming identical quality, I’m probably always going to be more interested in printed parts over alternatives.

  1. Such as setting up, warming up, untangling plastic, checking, peeling off, etc. []
  2. At this point, this is purely theoretical/hypothetical since none of my family/friends are interested in their own RepRap.  Hmm…  Maybe I should talk about RepRap MORE??? []
  3. A little over one sheet a day []
  4. I haven’t weighed a sheet of Mendel parts, so this is pure conjecture. []
  5. Assuming no extruder clogs, blocks, PTFE bulging, oozing down the threads, and problem free printing… []
  6. How many phasers could a laser slice if a laser could slice phasers? []

Who needs lasercut acrylic when you have a MakerBot?

Printable extruder and now printable dinos!  I had tried my hand at printable dinos, but I’m not in Zaggo’s league.  While my designs were for printable dinos that could be as a single piece each, his are clearly more elegant and use much less plastic.

What’s interesting about the differences between our designs is that mine were based on trying to replicate the existing dinos in a printable manner.  However, the dinos themselves were designed based upon the constraints of having to design three dimensional parts by layering and fitting lasercut acrylic pieces.  The question I completely failed to answer, and which Zaggo addressed perfectly, is “How would you redesign this object if you only had to be concerned with the constraints of a MakerBot, not a laser cutter?”

If you aren’t constrained by having to assemble lasercut parts, why not print them in such a way that it uses less plastic?  Why not print them on their sides?  Even with a non-heated platform it should be trivial to get the bottom of these dinos flat.  If anything warps it will be the parts that hold up the extruder.  And even then the warp would only serve to keep a tight fit on the extruder by squeezing it together.

If you examine a plastruder you can see the filament and heater assembly are not perfectly centered within the unit.  My guess is that’s  why there are two dinos – one which reaches towards the center.  However, there’s no reason a printruder couldn’t be designed so that the heater assembly was in the middle of the printruder.  If this were the case you could just print up two sets of printable dinos – instead of a left/right or big/weird combo.  Zaggo’s design allows for supporting either a printruder or a layered lasercut acrylic plastruder.

And we’re one step closer to a printable MakerBot!

MakerBot Hacking: More build space?

If you got a totally different set of lasercut body panels and larger threaded/precision rods it would be a snap.

But how would you get more build space out of your MakerBot without a big structural change?

I’m not sure how I would go about it – but I suspect I would start by fiddling with the Y stage.  As the smallest stage I suspect it may be the bottleneck.

How much for that doppleganger in the window?

Suppose you had a one MakerBot and just had to have a second.  How much would the rest of that MakerBot cost assuming you were willing to design and print every possible printable part? 1  Perhaps it would be in line with the $575 laserless MakerBot Cupcake CNC kit.  Then again, perhaps it would be the cost of the $750 MakerBot Cupcake CNC Basic kit less the $50.00 lasercut plastruder parts and $200.00 lasercut body parts, which would clock in at $500.00. 2

Are you really just $500.00 away from a second MakerBot?  That’s about half the cost of a Deluxe kit!  This brings to mind an even MORE interesting question.

What would you have done if MakerBot offered this deal:  Buy one Cupcake CNC Deluxe kit and get a Cupcake CNC Basic kit half off?

Well, if you already own a MakerBot, it’s like they gave you this deal anyhow!

  1. Including a printable Y stage. []
  2. Admittedly, this assumes zero value to the lasercut external parts.  So, let’s pretend you have a box of the appropriate dimensions. []