Series Plugin Test for Illustrative Purposes Only

The only purpose for this post is to serve as a reference for a more interesting and useful post.

Software Development with LLMs
  1. Series Plugin Test for Illustrative Purposes Only
  2. ChatGPT WordPress Plugins
  3. Coding with an LLM Sidekick
Software Development with LLMs
  1. Series Plugin Test for Illustrative Purposes Only
  2. ChatGPT WordPress Plugins
  3. Coding with an LLM Sidekick

[custom_pdf_generator visitor_data=“John Doe”]

 

DIY Carved Eraser QR Code Stamp

After some modest success carving some neat designs into pink erasers, I tried making a QR code stamp.  It didn’t work well at all, with exactly just one impression working … sometimes.

The first attempt took a really long time and turned out terribly.  After a few days break, and some mental distance from the project, I returned with some new ideas and inspiration.

Here was my new approach and plan:

1. The Stamp

  1. Go Slow.  Proceeding slowly and methodically is always a good idea with sharp instruments.  I went fairly slowly the first time, but this time I would be even more methodical.
  2. Cutting.  Rather than using the carving blades for the QR code features, I switched to using a craft knife.  It was just too hard to cut precise lines with a V or U shaped blade, managing not just the direction and speed of the cut – but the depth as well – for both sides of the blade.  The craft blade let me focus on just one side at a time.  I used the blade to cut at about a 45 degree angle along one side, then other side.
  3. Don’t Cut Too Much.  I used calipers to measure the pixels cut into my first attempt as well as the stamped result.  I discovered \the stamp pixels were very slightly larger than their rubber counterparts.  This tells me it would be better to cut too little rubber – and cut more later if necessary.
  4. Removing Scraps.  Rather than sticking my big old fingers into the eraser or trying to pop it out with the blade, I used a pair of 3D printed tweezers to pluck them out.

2. The QR Code

  1. Optimize the QR Code.  There are several ways to optimize a QR code for eraser / stamp carving. 1.  I used as many of these methods as I could:
    1. “Pixel” Size.
      1. As you add more information into a QR code, the QR code generator will need to use more black and white units2 to encode the information.  After some tinkering it seems like the smallest QR code that can be generated is 441 total pixels, 21 wide by 21 tall.  The absolute largest QR code I could generate looks like one of those “magic eye” posters.  I didn’t even try to count how many pixels wide this thing was.  It’s 9,216 pixels, 96 wide by 96 tall.

        This slideshow requires JavaScript.

      2. I was having a hard time carving a stamp 21 pixels wide into a 24.5 mm3 wide eraser, so the idea of carving more than 21 lines into an eraser by hand seemed not feasible.  The very next step up from the 21×21 grid would be a 25×25 grid, so I knew I had to find a way to limit the data, find the best error correction, and find a way to cut these small pixels and thin features.
    2. Proper Error Correction.
      1. QR Codes have built in “error correction” that allows the user’s scanning device to scan information from a partially formed, damaged, or obscured code.  These settings range from L (low), M (medium), Q (quality), and H (high quality) able to error correct from up to 7%, 15%, 25%, and 30% damage respectively.  Lowering the error correction allows you to create a smaller QR Code, but it will also be less robust.
      2. I fiddled with these settings a lot to find the maximum amount of data I could put into a QR code while still retaining a maximum size of 21×21 pixels.  I was able to encode about 16 characters in a L, 13 characters in a M, 10 characters in a Q, 6 characters in a H.  The code stores numeral easier and requires more pixels to store letters and special characters.
      3. My first attempt used an error correction level of L, but was basically unusable as there must have been more than 7% distortion.  This time, I decided to try for a very high level of error correction with the Q setting for 25%.
    3. Reducing Data.  This is where I used some tricks you may, or may not, be able to replicate.
      1. URL Shortener.  A TinyURL link to my Instagram page requires 29 characters.  Looking above, this would immediately suggest a 21×21 pixel QR code would not be possible.
      2. Trimming a Link.  After some fiddling, I realized that as long as the data encoded looked like a URL (as in some characters separated by a “.”), the QR code scanner would interpret it as a link.  This means we can skip the “http://” and “https://”, saving 7-8 characters!  Unfortunately, this still doesn’t let me encode the shortest URL that TinyURL could give me which requires 20 characters after discarding the “http” stuff.
      3. Maybe Just a Domain?  Maybe you just wanted to point someone to your website and not a big long link, shortened with a URL shortener.  Let’s work the numbers backwards.  Most commonly used domains end with “.com”, “.org”, “.biz” – with 4 characters each.  Using the information above, this means we could use a domain name with up to 12 characters for an L encoded QR code, 9 for an M, 6 for a Q, and just 2 for an H.  While it would be easy to find a 12 character domain, you’re stuck with only a 7% margin for your error correction.  A domain with 6 to 9 characters for Q and M would allow for 25% and 15% error correction.  You can still find 6 character “.com” domain, but… they’re unlikely to be very memorable.  This isn’t necessarily a problem.  You might be able to find a good short domain with an unmemorable name, but forwards the user to your real website.  The problem, of course, is that no one is going to want to click on that link.
      4. How About a custom URL Shortener?  It’s still possible to purchase a short URL, but they’re pricey.  I happened to buy a good one several years ago and have hung on tightly to it.  I slapped a YOURLS install on it, and have been using it ever since.  Using my own URL shortener means I can keep the URL down to just 9 characters – including the TLD!

Okay, back to carving.  I grabbed my headphones, put on some music, and took it very slowly – a little under two hours.  Here’s some progress photos:

This slideshow requires JavaScript.

Here’s how it looked (with some additional shots to show the original design overlaid):

This slideshow requires JavaScript.

I stamped this design 9 times – and all 9 were more or less easily scannable.  The neat thing about this design is that it points to a URL shortener I own, so not only is it about as tiny as possible, but I can change the destination if I ever needed – without having to spend two hours recarving an eraser stamp!

Eraser Stamp Carving
  1. Carved Eraser Stamping
  2. Further Adventures in Eraser Carving
  3. DIY Carved Eraser QR Code Stamp
  1. I won’t get too much into the weeds on the actual method of generating QR codes, mostly because I haven’t studied the math in it, but I did find a great article which has a lot of good background info and explanations []
  2. I’ll call them “pixels” from this point forward []
  3. Just barely under an inch []

Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II

I recently posted my method for making DIY heat transfer vinyl t-shirts without a craft / vinyl cutter.  I used the process to make an Avatar: The Last Airbender themed t-shirt, then a set of four Fallout themed t-shirts for the entire family.  After that I designed, cut, and ironed several more t-shirts. (You’ll see me refer to ironing the design several times, but each time I ironed the vinyl through a piece of parchment paper, to protect the design from scorching and the iron from being marred by melted plastic)

I learned a few more things along the way and thought I’d share these newb-mistakes and pro-tips.

But first, how about some pictures?!

This slideshow requires JavaScript.

  1. Cutting Designs
    1. Just be careful and go slow.
  2. Design Size
    1. I tend to make designs that are no more than about 6″ wide.  This has seemed to be a really good size to show off a cool design, but also fits neatly in the center of an 8.5″x11″ piece of standard printer paper.  You could make something a lot larger, but for all of my designs, this has worked out really well.
  3. Preparing Designs
    1. I forgot to take a picture of it, but it helps to draw an X and Y axis into your drawing.  The purpose of this is to help orient your design at the center of the fabric.  After I had cut out the design entirely, I then used the craft knife to cut triangles into the protective layer pointing towards the center of the XY axis center of the design.  Then, once this was done I could draw the XY axis lines on the protective layer.
    2. I used a yard stick to estimate the center line of the shirt, which I could then align with the XY axis lines on the design itself.
  4. Position Your Design
    1. After looking at various other t-shirts, I decided they tended to look best when the top of the design was about 3″ lower than the bottom of the “V” in my v-neck shirts.
    2. Once I had the shirt on the ironing board, I also put pieces of masking tape with a pen line on the ironing board to help me position and orient the yard stick repeatedly.
  5. Heat / Press
    1. Unlike my first attempt, I made sure to really push hard on the iron.  The idea is that you’re not just melting the vinyl adhesive, but actually melting it into the fabric.  If your iron isn’t hot enough, you’re not ironing long enough, or you’re not pressing hard enough, it won’t actually melt into the fabric.
    2. When you’ve melted it properly, you should see an almost… bubbly texture underneath the protective coating.  Then, once the vinyl is cool and you’ve peeled the coating off, the vinyl should look a little rippled since it is taking on the texture of the underlying fabric.
    3. This slideshow requires JavaScript.

  6. Iron, Cool, Wait, Inspect Vinyl, then Peel
    1. I made this mistake with the arc reactor t-shirt.  As I peeled the protective coating off, in one spot the vinyl got pulled up and in another spot it tore the corner off a sharp trapezoid in the design!  While it is possible I didn’t have the iron hot enough or press hard enough, I think the most likely explanation is that I didn’t wait long enough for the vinyl to cool – so it was still molten enough to be adhering to both the shirt and protective coating, causing the design to be damaged and torn.
  7. Peeling Direction
    1. If your design includes very thin or sharp little pieces (such as the pointy trapezoids in the Iron Man arc reactor), consider changing the direction of the protective coating peeling to avoid peeling towards a sharp point.  These little points have so little surface area they can easily stay stuck to the coating and get pulled off the shirt, ruining all your hard work.
  8. Repairing Mistakes
    1. The problem with making a mistake with heat transfer vinyl is that if you make a serious mistake to your design or application, you may have ruined a shirt.  (I would 100% wear a comfortable shirt even if the design wasn’t perfect.)  However, a little mistake doesn’t have to be the end of the world.  I made two mistakes on my arc reactor t-shirt, that I was able to fix well enough that they probably wouldn’t be obvious to the casual observer.

      Yellow arrows show where the design pulled up and wrinkled slightly. The red arrows point to where the design tore and was repaired.

      Yellow arrows show where the design pulled up and wrinkled slightly. The red arrows point to where the design tore and was repaired.

    2. The design of the arc reactor is about 3″ across, to give you a sense of the scale and size of the mistakes.  You can see two slight wrinkles in the vinyl, pointed out by the yellow arrows.  The red arrows points to where you can barely make out what appear to be wrinkles – but show where the design was torn and repaired.
    3. I didn’t find any really good way to fix the wrinkles, other than to really iron those areas very very hard.  It mostly pressed the wrinkles flat and they’re barely noticeable on the shirt.  Between the shimmery / reflective quality of the vinyl and uneven way a shirt would hang on a non-rectilinear organic body or form and the size of the wrinkles on the small design, it’s almost imperceptible.
    4. The torn design was initially quite heartbreaking.  By the time I had worked on this shirt, I had already created five other shirts without any kind of mistake.  It just so happened I either incompletely cut the design out (I don’t think so) or was a little impatient as I peeled the design (probably), and tore a pretty big piece off of the end of the right side trapezoid pointed out by the red arrow.  I tried to use my craft knife to peel the tip of the trapezoid off the protective coating, but it wasn’t working and I ended up mangling it beyond repair.  After stewing a bit, I figured I would simply cut out a new trapezoid piece and iron down over the torn piece.  I made sure to cut the new piece very slightly larger (we’re talking probably only 0.5 mm in each direction) and position it carefully over the damaged section, before ironing it down very firmly, waiting for it to cool down all the way, peeling the coating, then ironing it again.  Once again, I think the damaged portions wouldn’t be noticeable to most observers.

I would guesstimate a 5-foot long and 12″ wide roll of heat transfer vinyl could comfortably make 10-15 good sized designs and as much as 20 if you’re very careful.  Let’s say you can only make about 14 designs out of a roll, to be on the conservative side.  At about $7 for a basic color roll, this about $0.50 worth of vinyl per shirt.  My wife bought me several 2-pack blank v-neck shirts in assorted colors for about $14 per pack.  Ignoring the cost of my time (it’s a hobby, remember!) this is only about $7.50 per custom shirt.  I think this could make a really cool and inexpensive project for a class, letting all the kids make their own designs (by cutting the vinyl with scissors instead of craft knives, if they’re young) or to create a set of team shirts for a field trip or club.

Not only has this been a very fun and inexpensive hobby, I end up with a great looking custom t-shirt at the end that will probably last years.

I’ve got several more designs I’m working on and look forward to a few more updates.

Heat Transfer Vinyl T-Shirts (Without a Craft Cutter)
  1. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter
  2. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II
  3. Heat Transfer Vinyl T-Shirts Without a Craft Cutter (2023)

Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter

I’m going to commit the sin of a thousand online recipe websites and give you a bit of backstory before I get to the method.  If you don’t like fun, feel free to skip the first few paragraphs.

I recently watched Avatar: The Last Airbender and Avatar: The Legend of Korra with my kids. 1  Both shows were fantastic, but one particular character from A:TLOK was my absolute favorite. Varrick Iknik Blackstone is a fast talking, sometimes erratic, flamboyant industrialist / inventor voiced by John Michael Higgins.  Imagine a cross between Tony Stark and Zaphod Beeblebrox.2

Psst... Do the thing!

Psst… Do the thing!

You can find a few t-shirts out there which feature Varrick’s catchphrase3 and logo for Varrick Global Industries… but they all seem to suffer from at least one flaw.  They all appear to depict the logo mirror flipped with the big sail on the right hand side. I think I know why too.  An artist under the username of RogerBernstein on DeviantArt posted a very large, high quality version of the Varrick Global Industries logo in 2017, which just so happened to be mirror flipped.  His image has the distinction of being one of the first Google Image search results for “Varrick Industries Logo.”  I’m thinking people swiped his work, perhaps altered it a little bit, and then slapped it on t-shirts.  I mean… just look at this…

This doesn't look right

This doesn’t look right

Why am I so sure these logos are mirror flipped?  I paused TLOK during scenes in Season 2 – 4 when you can see Varrick’s yacht, near a plane, on a plane, on a jacket, and near some jewelry.  Now, I’m not even close to the kind of cosplayer / propmaker who has the patience, concentration, or dedication who can recreate their favorites props with meticulous planning, research, measuring, and endless revisions.  Even so, I’d at least like my designs to face the same direction as the show.  There are lots of other pictures showing this orientation, but this was the easiest one to locate.

The logo is partially visible on the yacht to the right side of the image

The logo is partially visible on the yacht to the right side of the image

Anyhow, with the help of GIMP, Inkscape, the pause button, and my trusty laser printer, I created my own design for the Varrick Global Industries logo – ready to put on a t-shirt.

  1. Basics
    1. Creating a design with “heat transfer vinyl” is reasonably straight forward.  The heat transfer vinyl is a thin sheet of vinyl stuck to a sheet of clear plastic with a mild adhesive.  You cut away what you don’t want, leaving the mirror of your design still stuck to the clear plastic, turn it over on a piece of fabric, and melt / fuse the design onto the fabric with heat.
    2. With access to a craft cutter ($250 – $1,000) and a heat press ($100 – $300), you could automate a lot of cutting work (but you’d still have to manually pull the excess vinyl out of the design) and have really fine control over the heat (if that was important to you), but none of that is actually necessary.  While these things might be helpful if you creating designs all the time, you don’t really need much more than some heat transfer vinyl and stuff you already have (a way to cut it, an iron, and some fabric).
  2. Materials
    1. Heat transfer vinyl.
      1. Also known / marketed as “HTV,” you’ll probably want to look for “stretch” or “stretchable” heat transfer vinyl if you intend to putting it on wearables like a t-shirt or similar.  If you’re not putting it on a wearable, you could probably get away with non-stretchable HTV.
      2. As this was my first such attempt, I went with some relatively cheap stuff that was only $9 for 5-6 feet worth of material.  I bought two rolls – one was a blue-purple metallic “chameleon” and the other was a dark silver-gray reflective.  Under normal indoor light conditions both look fantastic.  In brighter light they’ll look… well… brilliant.
      3. Pro Tip:  If your HTV came in a roll and packed in a box, consider keeping the box.  I normally discard boxes, but this way I can stack the rolls easily without having them roll away.
    2. Craft knife & Cutting Mat.  You may not be using a vinyl cutter, but you’ll still need a cutter.  If your design was very simple or you wanted to live dangerously and freehand it, you could probably get away with just using scissors.  We have an old medium size (12″ x 18″) cutting (possibly self-healing?!) mat which works well for most of our purposes.  These days they’re relatively cheap and definitely worth springing for a 2′ x 3′ model.
    3. Printer paper or Sharpie.  I created my design on the computer and printed it out (mirror flipped), then taped it to the HTV, then taped that down on the cutting mat.  If you wanted to just freehand your designs, you could just freehand the design directly on the HTV first.
    4. Tape.  Masking or blue painter’s tape.  The HTV arrived rolled up pretty tightly, so it definitely wanted to roll up while I was working.  The tape kept everything down and in place while I worked.
    5. Iron.  The HTV I purchased recommended applying heat for 5-15 seconds at 300 – 330 °F.  Our iron doesn’t list the temperatures – just the settings for different materials.  I ended up using the “Wool” setting based upon 30 seconds worth of internet research and going to Wikipedia.  The Wikipedia article suggested wool, silk, and polyester would all result in about 300 °F temperatures.  While I can’t vouch for the actual temperatures, the wool setting worked really well for me.
    6. Ironing Board.  I suppose an ironing board isn’t strictly necessary.  But, it sure was nice to have a big, flat, soft, narrow surface to lay my shirt on in order to iron it flat.  You could probably get away with putting down a blanket on a board or some sheets on top of some cardboard or a table.  However, if you already own an iron, chances are you’ve got access to an ironing board.
    7. Parchment Paper.  I used parchment paper because it’s cheap, plentiful, and non-stick.  It’s also slightly translucent, which makes it great for making sure everything is positioned properly and visually seeing when the design is starting to melt into place.  I’m sure there are lots of other nonstick options, but this worked well enough that it would definitely be my go-to in the future.
    8. Optional:
      1. Yardstick.  This is helpful in finding the center line for the t-shirt when you’re ready to apply the design.  It’s helpful, but not necessary.  Since you’re just using it as a straight edge, you could make do with just a long piece of straight cardboard.
      2. Specialty Tools.  You can buy specialty tools for “weeding” heat transfer vinyl, special tools for centering designs on shirts, and special heat pressers to apply vinyl.  For a few shirts now and then, I don’t think any of these are necessary.
  3. Process.
    1. A Note On Double-Checking.  As the old saying goes, measure twice and cut once.  While there are very few “mission critical” steps to this process, there are a few points where it makes a lot of sense to spend the time to legitimately completely check and then double-check something.
      1. Double-Check the Vinyl.  Depending upon the type of HTV you get, it might have two or three layers.
        1. Two Layers.  If it is two layers, there will be a thick clear/clear-ish protective plastic coating and the vinyl.  The side of the vinyl facing the protective coating is the part that will appear on the outside of your fabric and the side without the protective coating is the part that will melt and adhere to your fabric.
        2. Three Layers.  When there three layers, the vinyl will be sandwiched between the thick clear protective plastic coating and (at least in my case) a blue film on the back.  Again, the side of the vinyl facing the protective coating is the part that will appear on the outside of your fabric and the side with the thin film is the part that will melt and adhere to your fabric.
      2. I would recommend checking your HTV by cutting a thin corner off and peeling it to see how many layers you have.  I was alerted to this two/three layer issue by reading a lot of reviews.  My chameleon blue-purple vinyl had three layers and the dark gray reflective only had two.  You could probably remove it before you started cutting out your design, but you’ll definitely need to remove the film layer before ironing.
      3. Pro-Tip:  I would also recommend labeling the box your HTV is in with “two-layer” or “three-layer” to help yourself remember which kind you have when you come back to make a new design next time.
    2. Double-Check the Design.
      1. For most applications, you’ll want to mirror-flip your design.  You can do this in the graphics design program of your choice, probably using some printer settings.
      2. Pro-Tips:
        1. If you’re trying to create a vinyl pattern from some photograph, magazine page, or similar, you might want to photocopy it and then trace the design onto the back of sheet it’s printed on using a lightbox.
        2. Unless you’re creating a multi-layer process, consider making your entire design two-tone black and white.  When it comes time to cut out your design, this will make it a lot easier for you to remember which parts should be cut away and removed.
        3. You’ll be removing lots of areas from the vinyl in a later step.  There’s no harm to your design if you “over-cut” into these areas.  Overcutting allows you to ensure you’re definitely separating sections of the design from the parts that will be discarded.  I would recommend actually drawing in these “over-cut” spots into the design, either as part of the design process or manually with a pen after the design has been printed out.
        4. I like to add the word “reversed” to the design, so I’ll remember to actually mirror flip it.
        5. Since most anything I’ll be creating will fit on a t-shirt, I like to make my designs fit into a standard 8.5″x11″ sheet of paper.  I created a template to do this which has several guidelines and a border 1/4″ all the way around the sheet to make sure the design can be printed within the printer’s margins.
    3. Apply the Design.  As suggested above, you could cut out your design with scissors or perhaps even built it out of scraps of vinyl.  If you wanted to create lettering or follow a very precise pattern, I’d definitely suggest designing on a computer, printing it out (reversed), then taping the design to the vinyl so it doesn’t shift as you cut it, and taping the vinyl to the cutting mat so that doesn’t shift as you cut.
    4. Cut the Design.
      1. I used a craft knife and went slow, using steady medium-hard pressure to cut out the design.  When I wasn’t sure I had cleanly cut all the way through the vinyl, I went back and cut that area again.  Having done this a few more times since I started the blog post, I can say that I didn’t need to cut this hard – and could have used a medium pressure.  More than this and the clear plastic layer gets cut or scored.  This isn’t a problem, but it doesn’t lay flat quite as well any more.
      2. As you cut, be mindful of the areas you’ll be removing that you can “over-cut” into and those areas of your design where you won’t want any knicks and cuts.
      3. I made a point of “over-cutting” the critical pieces, especially at corners, because I did not want to chance the vinyl tearing as I removed the excess pieces.  A single section tearing or stretching would basically ruin the entire design and require starting over.
      4. I had to be sure I was cutting through the printer paper and cleanly through the vinyl, even at the risk of gouging the protective layer.  I was very surprised the protective layer held up as well as it did.  It was clearly scored where I had cut into it, but except for some very small parts, I never cut all the way through it.
      5. Once your design is cut out, use scissors to cut the entire area out of the vinyl roll.  I like leaving a 1/4″ allowance everywhere just so I know the scissors aren’t going to affect my design.
      6. Pro-Tip:  Before you start cutting, it might help to take a moment to plan out your cuts, draw in the areas for “over-cutting,” and even to make sure to darken in those areas that will be getting cut out to help keep things clear while you’re cutting.
    5. “Weed” the Vinyl.
      1. “Weeding” the vinyl is the process of pulling out all the vinyl pieces you’ve cut out that aren’t part of the design.  While there are lots of cheap weeding tool options for sale online for $5-10, I just used the point of my craft blade to pick these little pieces out.  I suppose it might help to have tweezers, a pushpin, a paperclip, or a toothpick, but the craft knife worked perfectly for me.
      2. I’d recommend going slowly, especially at corners, and making sure the parts getting removed are fully cut free from the design elements that are staying.
    6. Iron Fabric.  Definitely take the time to iron your fabric flat.  It would be a shame to discover a wrinkle on the underside of your t-shirt because the design was warped only after the vinyl was fused to the fabric.
    7. Orient the Vinyl.
      1. Once my pattern is cut and weeded, it’s ready to be placed on the t-shirt.  You can buy patterns, templates, and devices for centering a design on a t-shirt, but these seem unnecessary if you’re willing to simply be careful.  Heck, even if you had these specialty tools, you’d still need to be careful.
      2. I made sure my t-shirt was flat and centered on the ironing board, there were no wrinkles in the fabric, the amount of the shirt hanging on the left and right sides were about equal, and then used a yardstick to estimate the center line of the shirt running from the tag down.
      3. I put the design about four inches down from the neck in my shirt after looking at the designs on other t-shirts I had purchased.
      4. If you chose to cut out your design so there was a little extra room all the way around it, the empty clear protective plastic layer will still be “tacky” and help keep the design in place.
      5. Pro-Tips:
        1. It wouldn’t hurt to double-check that you’ve got the exposed vinyl side facing the fabric.  You definitely don’t want it melting against the parchment paper or your iron.
        2. One of the nice things about printing the design with guide marks and registration marks was that it made it a little easier to orient the design neatly on the shirt.  I printed a second copy of the design, then placed it on the shirt – then put the vinyl design down on the shirt underneath the paper.
        3. Before you place the vinyl on the fabric, take a moment to double check there are no stray pieces of weeded / discard vinyl stuck to the protective layer.  They’ll be impossible to remove once you’ve started ironing.
    8. Cover with Parchment Paper.
      1. My design was only about a 6″ diameter circle, so I only needed a piece of parchment paper slightly larger than this.  Since the parchment paper isn’t really consumed by this process, I went ahead and got a big square of it so I can reuse it on other shirts.
      2. The parchment paper I’m using is slightly translucent, which made it easy to ensure the design hadn’t shifted and so I could make a few last second adjustments.
    9. Iron The Vinyl.
      1. Obviously, read and follow the directions for your specific heat transfer vinyl.  The vinyl I purchased recommended 300 – 330 °F for 5 to 15 seconds.  I don’t have a fancy iron, so I heated the iron to the “wool” setting (estimated to be 300 °F) and ran the iron over the parchment paper, pressing firmly, in a small circular pattern for about 15 seconds in each area.  I kept the iron moving so as not to scorch any part of the design, the shirt, or the parchment paper.
      2. Pro-Tips:
        1. It never hurts to do a few test pieces.  I tried ironing both kinds of HTV onto an old undershirt to make sure the heat settings worked, I understood which sides needed to face against the fabric, how I would remove the backing once it had been ironed, and how it all worked.
        2. Having now done this a few times since I started the blog post, I would recommend putting something rigid or semi-rigid under the shirt.  The first time I ironed the design, it looked great – but came out slightly wrinkly in the wash.  I re-ironed it using really heavy pressure and the same shirt has held up in the wash ever since.
    10. Remove Backing.
      1. The instructions for my vinyl told me to “hot peel” the backing.  I took this to mean that I should carefully remove the clear protective coating from the heat fused vinyl.  There were a few small spots where it looked like the vinyl wanted to come up a little bit, but the backing came up cleanly everywhere.
    11. Cover and Iron Again.
      1. Since there were a few small spots where it looked like the vinyl might have come up slightly as I was removing the backing, I put the parchment paper back down and ran the iron around the entire design for about 5 seconds in each spot.
    12. Don’t Wash for 24 Hours.
      1. My instructions say to wait 24 hours before washing the garment.  I spent a while on this design, so I wasn’t about to chance it by throwing the shirt in the wash.
    13. Iron Again (Optional).
      1. After I washed the first shirt I made, the design appeared to have buckled slightly.  After a second ironing, it has stood up to repeated washings without a problem.

This slideshow requires JavaScript.

Heat Transfer Vinyl T-Shirts (Without a Craft Cutter)
  1. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter
  2. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II
  3. Heat Transfer Vinyl T-Shirts Without a Craft Cutter (2023)
  1. I’m going to reference these shows and their contents a lot.  I don’t own their intellectual property, they do, I just wanted to make a fun t-shirt for myself. []
  2. Those who know, know. []
  3. Do the thing! []

FIXED: Minecraft Launcher Stuck / Won’t Download / Slow Download on Windows 10

Sometimes you just gotta roll up your sleeves and craft your own fix

Sometimes you just gotta roll up your sleeves and craft your own fix

I recently purchased Minecraft for the PC (Windows 10) and tried to install it.  It was brutal, but I got through it.  I’m documenting my experiences here in the hopes it helps someone else.

The download was incredibly slow, would time out, get stuck, would give me the message “queued in position X,” or would simply not work at all.  Sometimes it would download 10 or 50 MB and then stop.  It was pretty frustrating.  I tried a number of things and eventually found a constellation of things that ended up fixing the problem.

  1. Things That Helped / Worked:  From Simplest to Most Complicated
    1. Making sure I was on a speedy wifi network.
      1. The easiest first step was to get off the wifi extended and onto the main wifi network.
    2. Ended all Minecraft processes / programs that were running.
      1. Press Ctrl + Shift + Esc to open the Task Manager.  (Right clicking on an empty space on the task bar can also bring this up as an option in the context menu.
      2. Right click on any “Minecraft” processes as select “End task.”
    3. Sign out of the Microsoft Store app.
      1. You should see a two letter (probably your first and last initials) circular icon in the top menu bar for this app.  Click “Sign out”
    4. Reset the Microsoft Store app.
      1. Start / Windows Button -> ⚙️Settings -> Apps
      2. Scroll down until you see “Microsoft Store,” select it and click “Advanced options”
      3. Click “Repair,” let the computer do it’s thing, then click “Reset.”
    5. Make sure the time zone and clock are up to date.
      1. This sounds kinda crazy, but it’s a legit reason why Minecraft might not be installing.  Many programs try to synchronize and authenticate each other across the internet – using agreed upon times as a basis.  An incorrect time might be used by a malicious person or program to breach a system.
      2. Anyhow, here’s how you apply this fix:
        1. Start / Windows Button -> ⚙️Settings -> Time & Language
          1. Turn on “Set time automatically” and “Set time zone automatically” and click “Sync now”
    6. Check to make sure you didn’t cripple the download speeds yourself.
      1. Start / Windows Button -> ⚙️Settings -> Update & security -> Delivery Optimization -> Advanced options
      2. When setting up my PC I had crippled Windows download speeds to 0.1 Mbps.  While this helps my day-to-day computer usage and prevents Windows from chewing up all my bandwidth to update itself, it also crippled anything I wanted to download through the Windows Store app.  I’d recommend removing all bandwidth caps while trying to download Minecraft.
    7. Notes:
      1. I can’t be sure, but Windows does a lot of stuff behind the scenes, but having checked the installed apps after Minecraft was fully installed, I noticed several other apps were also installed.  I believe the Windows Store needed to install a bunch of other programs and app / dependencies before it would actually allow Minecraft to download.  You may or may not see these pop up.
  2. Things That Did Not (Seem To) Help
    1. Restarting the computer didn’t seem to help.  I suppose it’s worth trying.
    2. Trying to install a prior version of Minecraft for Windows 7/8 didn’t work either.  They seemed download fine – but wouldn’t run at all.
    3. Trying to install the Minecraft Java version first.  I ended up uninstalling all versions and all launchers and starting from scratch.

I hope this helped.  If you’ve got some other fix that worked or idea how to help, I’m sure plenty of others would want to know.  Feel free to leave a comment.

Falling Down the Mechanical Keyboard Rabbit Hole

The Solace of Quantum (Mechanical Keyboards)

The Solace of Quantum (Mechanical Keyboards)

TLDR:  I’m going to try some mechanical keyboards to help me work from home and blog about my experiences.

I’m fortunate that I’ve been able to work from home this pandemic.  I’ve always made a special effort to make my work more “digital,” by scanning and organizing digital copies of important work documents.  In many ways working from home hasn’t required too many changes to my overall workflow.  My entire office and desk space shrunk to just a single laptop propped up on a plank of cardboard with some holes to help distribute heat.  I have to be more disciplined about creating digital notes, since I can’t cover my work space in post-its and illegible scraps of paper.  Two pairs of noise cancelling bluetooth headphones are are taking the place of four walls and a door to help me concentrate and communicate “I’m working” to the kids. 1  While I’ve gotten used to one medium sized laptop screen, in place of a dual monitor setup, the one thing that’s been extremely difficult is using a laptop keyboard instead of a full fledged keyboard.

Which brings me, dear reader, to the QMK or “quantum mechanical keyboards.”  The QMK is a keyboard firmware2 that allows you to create very customized keyboards and keyboard layouts.

A while back I wrote a Chrome extension to help me with some work related data entry tasks.  It works by intercepting some of the top row function keys, preventing their default actions, and replacing them with some macros.  This setup probably slashed the number of required clicks and keystrokes by 75%.  My fevered dream is for a custom keyboard which could cut this yet in half.

Now, if that keyboard also has some media controls and sweet RGB goodness, well, then, awesome.  Of course, this means I can’t just go order a keyboard off a shelf.  While there are plenty of neat custom and QMK keyboards, to really get the most out of a board, to get exactly what I need, I will need to roll up my sleeves and actually dive into the firmware itself.

Next up – which keyboards?!

Default Series Title
  1. Why two pairs?  I originally bought one for myself and one for my wife, but now I’m just using one while the other charges… []
  2. “Firmware” is nothing more than software built to run inside a piece of hardware []

PCB Design with KiCAD

It is pretty incredible that you can find a written or1 video tutorial on virtually any topic to learn anything.  Today, I’m particularly thankful to Shawn Hymel, Sparkfun, and Digi-Key for putting together their Intro to KiCAD video series on printed circuit board design.

This series took me from knowing nothing at all about PCB layout and design to ordering my very first board through OSHPark.  My first design isn’t anything amazing – it was basically a breakout board for an ATTiny85 to make it easier to build small projects. 

My first ATTiny hacked tap light was a mess.  I soldered wires directly to the microcontroller making it a real pain to update. ((I ask you – is this the work of a sane man?)) I soon realized my mistake and soldered an 8-pin socket in its place so I could reprogram the chip easily.

This is the alternative to a custom PCB – a rat’s nest of wires soldered to a chip

Mercifully, Shawn’s tutorial series got me up and running very quickly.  This post is not meant to be a tutorial for KiCAD, but more like a “lab notebook” for the workflow to create a board.  If you haven’t built a board yet, go check out Shawn’s series and follow along in KiCAD.  If you are a novice like me, you might find these notes helpful:

Eeschema

  • If you launch Eeschema separately from KiCAD, you can save different versions of a schematic.  Keeping old versions of design files is hugely helpful to me and if you launch KiCAD directly, the option to save different file names and versions is not available!
  • The keyboard shortcuts in Eeschema are great.  With just a few, it’s possible to really get around quickly.
    • “Shift-A” and left click to place parts 
    • “M” to move parts
    • “R” to rotate parts
  • It is necessary to add “PWR_FLAG” to both the power and ground lines.
  • Double check your connections work by clicking on the bug icon. 
  • Assign the parts you intend to use to match up with the symbols using the “Assign PCB footprints” icon.
  • Save your work and “Generate netlist” to have something the Pcbnew will be able to work with.

Pcbnew

  • First configure the Design Rules by going to Setup -> Design Rules.  Shawn pulled these KiCAD Design Rules from the OSHPark.com website.  KiCAD has apparently changed a little since the version used on the OSHPark website, but the settings are easy enough to identify and change.
    • Net Classes Editor
      • Clearance: 0.01.  Track Width: 0.01.  Via Dia: 0.03.  Via Drill: 0.015.  uVia Dia: 0.03.  uVia Drill: 0.015.  Diff Pair Width: default.  Diff Pair Gap: default.
      Global Design Rules
      • Minimum track width: 0.006.  Minimum via diameter: 0.027.  Minimum via drill: 0.013Custom Track Widths: Track 1: 0.03
  • Read netlist” to bring your design over from Eeschema.
  • Placing parts and drawing lines gets a lot easier when you fine tune the Grid.  I started with 5.00 mils at first, then smaller figures to place smaller parts and features.
  • Once the parts are arranged in Pcbnew, connect the ground and power lines using 30 mil traces and everything else using 10 mil traces.
  • Create the outline for the board cutout by clicking on “Edge.Cuts” and drawing with the “Add graphic lines” tool.  Starting with my second board, I began cutting the corners off, so that they were a little nicer to hold and 
  • Label things on the “F.SilkS” and “B.SilkS” layers using the “Add text”‘ button.  Since my boards are so small, I wanted the text to be a fair bit smaller than the default settings.  I edited the text settings by going to Setup -> Text and Drawings.  
    • Copper text thickness:  0.007.  Text height:  0.035.  Text width:  0.035.
  • Create a copper pour with Place -> Zone, then choose “F.Cu”2 and “GND”.3 and draw a box around your board.  Then repeat for the “B.Cu” and “GND.”

Again, I’m a total newbie at circuit design.  If I got something wildly wrong, please let me know.  :)

  1. More frequently these days []
  2. Front copper []
  3. Ground, natch []

Regex: Back reference and Self reference in Regular Expressions

This is going to be a very short and niche post.

Sometimes I have to use regular expression or “regex” searches to parse a bunch of text, but I can’t remember how to use the search function to find a particular sequence of character and then reuse those found characters in the text I’m trying to replace it with.  In Notepad++, this would be done as follows:

  • Search string:   (7//*[0-9]*[0-9])\r\n
    • This will find all entries with “7/3” or “7/14” or similar digits with a line return afterwards
  • Replace string:  \1/2018;
    • This will replace those entries with “7/3/2018;” and “7/14/2018;”, respectively

The trick here is that the first set of search information is collected together within a set of parenthesis, which are then referenced back by the “\1”.  If you forget the parenthesis, the “\1” term won’t “know” what it’s supposed to be repeating.

Like I said, very niche.

[SOLVED] Google Pixel stuck in a boot loop after update and full storage

If your Google Pixel is stuck displaying the “G” and forever looping through a boot screen, Google’s support will tell you there is no hope and you’ll either have to do a complete factory reset and data wipe of your phone or send it in so they can do it for you.  However, if you are adventurous or have nothing to lose, there may still be hope.

I’m not saying this will work for you, or that you should even try what worked for me.  But, if you’re as desperate as I was, you would try absolutely anything to get your photos back.1

While out of town on vacation, away from WiFi and cell carrier internet access, I took a lot of photos and a few short videos.  My phone, a lowly Google Pixel with just 32GB2 of storage ran out of space.  It claimed it was at “100%” usage of storage with only a few dozen megabytes of space left.  I leaped into action, right there on the beach, deleting some large documents and ZIP files I had downloaded and then asked the Google Photos app to “Free Up Space.”  Pats on the back!  Job well done!

Except the Pixel had other ideas.  I reached into my pocket later to pull out the phone and take a picture to discover that it was on the white boot screen with the colorful Google “G” logo and a light gray “progress” bar undulating underneath it.  I thought this might be due to the phone overheat and put the phone away.  When I pulled it out later, I found the phone was still showing the same white boot screen.  I don’t know what caused this problem.  I don’t know if it was the Android system update from a few days ago, the storage being mostly full, possibly being too warm from being in my pocket, or what.

I tried everything I could think of and everything I could find to no avail:

  • I was unable to boot the phone into anything resembling active status, not even the last measure of “Safe Mode.”
  • I could boot the phone into “Recovery Mode” which looks like the Google Android robot lying on its back with a front panel open and some text underneath.  However, attempts to “Start”, “Reboot”, and use “Recovery Mode” were all unsuccessful.
  • I tried following the recommendations of the mysterious “Techno Bill” on the Pixel Google Groups to install ADB and Fastboot and then apply a Rescue OTA to the Pixel.
    • If nothing else, this one possibility gave me hope that I could still interact with my phone, somewhat.  I was careful to try out the specific OTA3 for my phone.  As you navigate the various menus in the Recovery screens for Android, you’ll need to take note of the version of Android you’ve got – so you can place the same version over it.
    • As best as I understand this fix, you’re basically overwriting a possibly damaged or corrupted operating system with a shiny new factory fresh version – and that doing so leaves your data intact.
  • The thing that gave me the most hope was this post by Mac_DG on Reddit.  Basically, they said, “If you can get there [the Google recovery screen], and it’s a software problem everything is fixable.”
  • I even spent 43 minutes4 chatting5 with Google’s Pixel support team member, Marlene.  She was sympathetic, but assured me in no uncertain terms that my data was lost forever.  My options were to send my phone to Google or take it to a repair facility for a diagnostic.

Finally, after much searching, I found this thread on Google’s product forum where someone named Jintoku described an identical problem to mine – and someone named Kara Alexander described an identical problem … and a solution suggested by Samuel Cooksey!  If you think you’ve got the same problem – nearly full storage, frozen or looping “G” screen, and unable to enter Safe Mode, it is absolutely worth your time scrolling through this thread to see if this solution may work for you.  It is also worthwhile reading through Jintoku’s conversation with Google’s representatives to see how hard they tried not to do a factory reset on the phone – and just how certain the Google representative was that this was the only possible solution short of outright replacement of the phone.

I will not duplicate the efforts of Techno Bill, Jintoku, Kara Alexander, Samuel Cooksey, and Mac_DG by repeating everything they’ve already said.  Rather, you may use any of the above links from my search to follow along and, hopefully, set you on the correct path.  If you would prefer a condensed guide, with links, I hope this will help:

  1. Follow Techno Bill’s guide on installing ADB and Fastboot.
    1. If you’re on Windows, you either need to follow Techno Bill’s guide on updating your computer’s “Path” or, if you’re a little more comfortable doing so, you can skip steps 1-8 and instead open the command prompt and type
      1. “SET PATH=%PATH%;c:\adb”
      2. The benefit of doing it this way is that you don’t have to permanently add this path to your operating system, it’s a lot faster and easier than Techno Bill’s method, and you don’t have to restart your computer
  2. Download the Developer Beta Preview OTA for your phone6 .
    1. It almost goes without saying that with words like “Developer”, “Beta”, and “Preview” in the title, this version of the Android operating system isn’t for the faint of heart.  If you don’t know what you’re doing or, like me, don’t have anything to lose, you shouldn’t be trying this.
  3. Follow Techno Bill’s guide to “sideload” the Rescue OTA to the Pixel.

If this blog post, that I write as my phone is running the Photos application right now to back up my vacation photos, saves even one person’s data, I will be an incredibly happy person.

  1. After all, what’s the worst damage I could do?  In a worst case scenario, the phone would still be unresponsive or bricked permanently []
  2. !!! []
  3. I believe this refers to an “over the air” operating system update []
  4. I was emailed the chat logs after the session ended []
  5. Since I had no phone, natch []
  6. Pixel, Pixel XL, Pixel 2, Pixel 2 XL []

Loudest 3D Printed Whistle – now with 100% more science

Extremely loud and compact emergency whistle v1

Extremely loud and compact emergency whistle v1

I ordered a decibel meter from Amazon the other day so I could drop some science on the claims from various 3D printed whistles on Thingiverse.  There are several that claim to be the loudest.  Well, today, I began my quest to put these claims to rest.

The closer the decibel meter is to a sound source, the higher it registers.  To eliminate some of these variables, I placed the decibel meter on a counter in front of me and a chair 24 inches in front of that.  For each of the whistles I was testing I stood just behind the chair and gave the whistle three hearty puffs.  The decibel meter, which was set to record and display the “max” reading, would then tell me the loudest reading for that set of three whistle toots.

Without further ado, I declare the “Extremely loud and compact emergency whistle” by Whistleblower on Thingiverse the clear winner at 121.1 decibels.  Both whistles by this designer took the top two scientifically determined spots.

NameThingiverse IDMass (grams)PricePrint Time (minutes)DecibelsSubjective Rank
Extremely loud and compact emergency whistle [v1]29330213.9$0.1222121.11
Extremely loud and compact emergency whistle [v2]29330213.7$0.1118111.53
v29 (Over 118 db!)117916013.9$0.4290110.44
2 chamber whistle (LOUD) [w5]26165128.1$0.2449109.52
Emergency Whistle with Solidworks 2014 source4951721.2$0.047101.85
Whistle Ring Modified [v2]20271151.6$0.05990.86

Just how loud is 121.1 decibels? 1  Well, for starters, it’s just above the pain threshold of 120 decibels.  It’s louder than:

  • Your iPod headphones at maximum volume
  • A baby crying, next to your ear
  • A full symphony orchestra
  • The subway
  • A sporting event
  • A chainsaw
  • A jetski
  • A marching band

It’s on par with:

  • Thunder
  • A shotgun
  • An ambulance siren
  • A rock concert

And, if you didn’t have earplugs, you would exceed the daily safe exposure limit for 121 decibels in 7 seconds.

There may be louder whistle on Thingiverse2 and, if so, please let me know.  I’ll print the model and test against the others in my arsenal.

Default Series Title

  1. This page has several charts to help explain. []
  2. Or some other online 3D design repository []