ED-E Project: Origins

Hi, I’m DexterStarfighter, offspring of MakerBlock.1 I am a maker and artist with possibly too many interests that include drawing, writing, cats, theatre, video games, horror podcasts, folklore, coding, Jenga, history, triangles, succulents, and reading literally anything. I have been going to MakerFaire for basically my entire life and it has always been something I look forward to for the whole year. As soon as Dad told me MakerFaire was coming back, I knew I had to make something super cool for the occasion. This brings me to my latest project, a companion robot.

First, some background. My favorite game is part of the Fallout series (New Vegas, if you were wondering). I started the Fallout series because my dad played them when the first Fallout came out and I wanted to be able to share a cool game with him. I started Fallout 1 and loved it, then played Fallout 2 and 3. Over the summer, Epic Games released Fallout New Vegas with all DLCs for free and of course, I played the crap out of that.23

In Fallout New Vegas, there are various companions you can take with you on your journey through the Wasteland. There are human companions of course (and ghoul and nightkin), but you can also take with you one nonhuman companion. At first I was super disappointed that I couldn’t find Dogmeat. I don’t actually like being around dogs in real life, but I got Dogmeat in Fallout 1 and somehow I have become very attached. (I do not even want to think about how many times I have reloaded a save to keep that little jerk alive.) I quickly got over my disappointment though, because there is a statue of a dinosaur and now I’m disappointed that you can’t have a dinosaur robot companion. Anyway, in my travels through the Mojave, I found two interesting nonhuman companions. The first one I found was this little eye bot named ED-E. I play as a charismatic nerd (high INT and CHA with good repair, speech, barter and science) so I was able to fix him up. ED-E was still only able to beep in ways I couldn’t understand and when I brought him to where I was supposed to for his quest, there was some sort of glitch and I couldn’t interact with the lady for the quest. ED-E seemed kind of lame to me then, so I took him back to the place I found him and left. I later ran into a dog named Rex who I had to take care of for an Elvis impersonator (no, really) and found he was a pretty good companion.

Flash forward to the endgame. I had met a cowboy robot, climbed a dinosaur statue, resurrected a B-29, fought a soldier for a dog’s brain, charmed a scientist, accidentally sided with the mafia, cleaned out an entire casino, assassinated a 261-year-old man, had my vital organs removed, stolen 27 bars of gold, befriended a man wrapped in toilet paper, and was well on my way to conquering New Vegas for myself. I had only one more thing to check off my list: walking the Courier’s Mile. Don’t worry, I won’t spoil the Lonesome Road quest for you- I’ll just tell you that I met ED-E again. Somehow, within the first few minutes of interacting with him, I had become so completely charmed by this little robot that I would do literally anything to protect him. I’m not sure what about ED-E made him so endearing to me, but he became my best friend. 

GameBanshee

In 2019, I met Odd_Jayy at MakerFaire. I remember seeing his spider bot and thinking how cool it was. I’ve always liked the idea of a companion bot, but I’ve never actually had a specific idea of what I want out of one. When dad told me that we would be going to MakerFaire again, I immediately thought of an ED-E companion bot.4 Dad loved the idea too and gave me lots of good tips on how to get started. I have a tendency to get lost in the details, so he helped me focus on the big picture and the first steps I could take to achieving my goals.

I have a lot of ideas about what I want ED-E to do eventually, but I’m a complete beginner at Arduino programming. Knowing this, Dad suggested starting small. First, turn on one light. Then multiple lights. Then make them flash. Then make them change colors. Then add beeps. Stuff like that. I was like “cool, cool” and immediately programmed ED-E to beep the entirety of Never Gonna Give You Up instead of doing literally anything sensible.

I regret nothing. It was frustrating at first because I was super out of my depth. I used Chlorondria’s arrangement of Never Gonna Give You Up and used ChatGPT to help me learn how the code works. ChatGPT was super helpful because I could get feedback on why my code wasn’t working. The sense of accomplishment when I finally recognized the tune made all the frustration so incredibly worth it.

After my self-indulgent first project for ED-E, I moved on to taking Dad’s suggestions. Sort of. I’m a teenager, and therefore I am legally obliged not to listen to any authority figures, real or perceived. I made ED-E flash some rainbow lights. I started with just red lights and it took a while to make the code work, but once I made it work, I just changed the color brightnesses. Fun fact: my ED-E bot now actually glows two shades of blue in his rainbow light show pattern. For some reason I decided RGB stood for Red Yellow Blue and messed up with the color values when I was trying to make green and accidentally made a light blue. The light blue actually looked pretty cool, so I decided to keep it.

Today, I worked more on5 ED-E’s… musical function. I’m going to warn you right now: there will be spoilers for MakerFaire below! I intend to take ED-E to MakerFaire with me, and if you meet him, there will be some fun surprises in store for you. Not if you read the spoilers, though. MakerFaire is a big place and I don’t expect everyone who visits this page to run into me at the Faire, so I’ll include some stuff about the surprises below. 

***SPOILERS START***

 

If you’re still here, I assume you want to read this. One of my favorite things about ED-E in Fallout are the little conversations you can have with him. I want to be able to have a few little “conversations” with my companion bot, kind of like in the game. I’m going to have a Pip-Boy with various buttons to run functions for ED-E, but one of the first conversations I thought of had to do with his musical function. This was my idea:

 

Me: Hey, ED-E. Do you wanna sing them your favorite song?

ED-E: [Shy beeping]

Me: Aw, are you shy?

ED-E: [Shy beeping]

Me: Come on, ED-E. We’d all really like to hear you sing!

ED-E: [Questioning beeping]

Me: Yes, of course! Listen, I’ll ask them. Do you want to hear ED-E sing his favorite song?

Other person: Yes!

Me: See, ED-E? 

ED-E: [Pleased beeps, wait, then Rickroll beeps]

 

Obviously, I’m not going to make ED-E understand my words and respond to them. ED-E will be a shoulder mounted bot, so I want to be able to have conversations that trigger based on movement. I’m using a Circuit Playground, so I intend to take full advantage of all the different sensors it has. I programmed ED-E to run his Rickroll function if he senses a significant change in acceleration. I’ll pop my shoulder like I’m giving him a nudge, triggering the function. He waits for 8 seconds to give me time to talk, then plays the Rickroll beeps.

I have to admit, this took a WHILE to get right. It was still incredibly satisfying to see it all come together and go right. I was so excited when it started working! I did a lot of testing to get the sensitivity right because I don’t want it to trigger if I’m just walking around. I’m still fine tuning that part because I bumped the cord earlier and he started Rickrolling me. Then again, maybe ED-E just has a funny sense of humor.

 

***SPOILERS END***

So, what’s next for ED-E? I think the next thing I want to work on is getting his beeps right. I can make him beep music, and that’s great, but I also want to have him beep every so often and have “conversations” with him. I’m going to program some little beep clips for different emotions or situations that I can then mix and match into various conversations. I might also actually listen to Dad for once and work on a light show.

Thanks for reading about my ED-E project! I’ve enjoyed working on him and I’m so excited to share him with other makers. I’ll try to post updates regularly (they shouldn’t be as long as this one since you won’t need all the background next time). Thank you to Odd_Jayy for the inspiration, Chlorondria for the musical arrangement, ChatGPT for the troubleshooting help, Adafruit for making awesome boards, whoever made Fallout New Vegas, MakerBlock for being a great dad and helpful sounding board, and to you for reading this post.

ED-E Companion Bot Project
  1. ED-E Project: Origins
  2. Beep Boop: Emotions for ED-E
  1. I considered saying progeny and descendant of the House of MakerBlock, but offspring sounded the best. Progeny sounded weird and the descendant thing reminded me of Game of Thrones, which I have not read or watched, but I might someday and I don’t want to invite spoilers. []
  2. I love Epic Games. Free games every week? Yes please! Disclaimer: I am not being sponsored by Epic Games, but if I was, that would be awesome. []
  3. New Vegas is best Fallout, you can fight me on this. []
  4. I also considered a Muggy companion bot. I love Muggy and if ED-E turns out well, Muggy might be my next project. []
  5. Lol, moron []

ChatGPT WordPress Plugins

This is kinda bananas.  Years ago I wrote a plugin to solve a problem I had.  I wanted a simple WordPress plugin where I could insert a shortcode into a blog post, specify a series title, and have it automatically search up all the other blog posts that used the same shortcode and series title, and then insert a nice looking list of blog posts in that series in chronological order.

It was one of my first plugins, still available on WordPress.org – just hidden since it hasn’t been updated in almost a decade.  It still works to this very day, if occasionally a little buggy.  After several WordPress versions, it no longer properly displays the series title, which is a real shame.

On a whim, I tried using ChatGPT to generate some plugins.

Here’s an example of my old plugin and the new ChatGPT written plugin (in this order):

Default Series Title

See how bad that was? It completely mangled the title.

Edit:  Since publishing this post, I realized that I would have to choose between

  1. Leaving the old defunct plugin in place just to make a point about how it didn’t stand the test of a decade’s worth of WordPress updates, but then also leaving broken series titles sprinkled through my back catalog of blog posts.
  2. Go back through nearly 10 years of blog posts12 to change them over to the new plugin shortcode.
  3. Disable the old plugin, but have the new plugin work with the old shortcode as well as it’s own new shortcode, at the cost of losing an example of how bad the old plugin performed.

I went with option 3.  Just take my word for it, it looked bad.

He makes a valid point

He makes a valid point

Now for the ChatGPT version:

Software Development with ChatGPT
  1. ChatGPT WordPress Plugins

It took me about an hour to whip up a working WordPress plugin with the same core functionality.  I would break down the time I spent as follows:

Time Spent Creating Series Plugin with ChatGPT

But, that’s not all!  You see, as I was writing this blog post, I realized it would be fun to include a pie chart to indicate the time I’d spent on this.  Unfortunately, the plugin I had written to do exactly this many years ago has apparently completely given up the ghost.  Thus, before I proceeded to this very sentence, I used ChatGPT to create a plugin for displaying custom pie charts!

Time Spent Creating Pie Chart Plugin with ChatGPT

Obviously, this plugin took a lot longer.  The first few versions were having all kinds of problems between the HTML Canvas code and trying to figure out how to make sure the javascript was not loading too early or too late.  In the end, I just asked it whether it was capable of even creating a pie chart – and it gave me a piece of workable javascript.  I told it to refactor the plugin using this same javascript, and then it was a matter of fine tuning the result.

If you don’t know anything about writing WordPress plugins, you could probably use ChatGPT to create a very simple plugin.  However, once it got slightly more complicated, it would likely require some troubleshooting to figure out what was happening.  In the series plugin it took me a while to root through the WordPress functions to figure out that apparently ChatGPT was trying to use a function in a way that simply did not work.  I explained to ChatGPT that that particular function could not operate in that way, explained how the data it was feeding into that function needed to be first modified, and then asked it to refactor the code.  From that point forward, it started to look a lot better.  There were some additional quirks – like putting more than one series title in a single post would only display one.  I suspect these problems of ChatGPT taking a shortcut to generate code, hardcoding certain variables and names, not considering that it might need to operate more than once on the page, may be difficult for it to anticipate and address.  Without some degree of WordPress development knowledge, I think a novice user armed only with ChatGPT would need to do a lot of refactoring, asking the program to generate the plugin all over from scratch many times, before arriving at a workable result.  Then again, a million monkeys at typewriters, right?

I think ChatGPT could be great for creating relatively simple plugins like a series plugin, a pie chart plugin, or even a table of contents plugin.  However, having seen how much time it cut out of the development process, I think it would be interesting to try developing an A/B testing plugin or more complicated plugin.

I think the next task to see if I can get it to generate QMK code for a keyboard, Arduino code, Raspberry Pi code, or a chrome extension.

I can already see some ways to improve both of the ChatGPT generated plugins used in this blog post.  My series plugin included two arrows at the bottom so the reader could navigate to the prior or next post in the series.  And I think it would be great if the chart plugin had a feature where I could specify the units, so the magnitude data would be included with the labels.  I may try getting it to shoehorn these updates later…

If you see these reflected in the charts above, I must have already done it.  :)

Software Development with LLMs
  1. Series Plugin Test for Illustrative Purposes Only
  2. ChatGPT WordPress Plugins
  3. Coding with an LLM Sidekick
  1. NGL, I can really be a lot some times. []
  2. Um, you’ve probably gathered that. []

Series Plugin Test for Illustrative Purposes Only

The only purpose for this post is to serve as a reference for a more interesting and useful post.

Software Development with LLMs
  1. Series Plugin Test for Illustrative Purposes Only
  2. ChatGPT WordPress Plugins
  3. Coding with an LLM Sidekick
Software Development with LLMs
  1. Series Plugin Test for Illustrative Purposes Only
  2. ChatGPT WordPress Plugins
  3. Coding with an LLM Sidekick

[custom_pdf_generator visitor_data=“John Doe”]

 

DIY Carved Eraser QR Code Stamp

After some modest success carving some neat designs into pink erasers, I tried making a QR code stamp.  It didn’t work well at all, with exactly just one impression working … sometimes.

The first attempt took a really long time and turned out terribly.  After a few days break, and some mental distance from the project, I returned with some new ideas and inspiration.

Here was my new approach and plan:

1. The Stamp

  1. Go Slow.  Proceeding slowly and methodically is always a good idea with sharp instruments.  I went fairly slowly the first time, but this time I would be even more methodical.
  2. Cutting.  Rather than using the carving blades for the QR code features, I switched to using a craft knife.  It was just too hard to cut precise lines with a V or U shaped blade, managing not just the direction and speed of the cut – but the depth as well – for both sides of the blade.  The craft blade let me focus on just one side at a time.  I used the blade to cut at about a 45 degree angle along one side, then other side.
  3. Don’t Cut Too Much.  I used calipers to measure the pixels cut into my first attempt as well as the stamped result.  I discovered \the stamp pixels were very slightly larger than their rubber counterparts.  This tells me it would be better to cut too little rubber – and cut more later if necessary.
  4. Removing Scraps.  Rather than sticking my big old fingers into the eraser or trying to pop it out with the blade, I used a pair of 3D printed tweezers to pluck them out.

2. The QR Code

  1. Optimize the QR Code.  There are several ways to optimize a QR code for eraser / stamp carving. 1.  I used as many of these methods as I could:
    1. “Pixel” Size.
      1. As you add more information into a QR code, the QR code generator will need to use more black and white units2 to encode the information.  After some tinkering it seems like the smallest QR code that can be generated is 441 total pixels, 21 wide by 21 tall.  The absolute largest QR code I could generate looks like one of those “magic eye” posters.  I didn’t even try to count how many pixels wide this thing was.  It’s 9,216 pixels, 96 wide by 96 tall.

        This slideshow requires JavaScript.

      2. I was having a hard time carving a stamp 21 pixels wide into a 24.5 mm3 wide eraser, so the idea of carving more than 21 lines into an eraser by hand seemed not feasible.  The very next step up from the 21×21 grid would be a 25×25 grid, so I knew I had to find a way to limit the data, find the best error correction, and find a way to cut these small pixels and thin features.
    2. Proper Error Correction.
      1. QR Codes have built in “error correction” that allows the user’s scanning device to scan information from a partially formed, damaged, or obscured code.  These settings range from L (low), M (medium), Q (quality), and H (high quality) able to error correct from up to 7%, 15%, 25%, and 30% damage respectively.  Lowering the error correction allows you to create a smaller QR Code, but it will also be less robust.
      2. I fiddled with these settings a lot to find the maximum amount of data I could put into a QR code while still retaining a maximum size of 21×21 pixels.  I was able to encode about 16 characters in a L, 13 characters in a M, 10 characters in a Q, 6 characters in a H.  The code stores numeral easier and requires more pixels to store letters and special characters.
      3. My first attempt used an error correction level of L, but was basically unusable as there must have been more than 7% distortion.  This time, I decided to try for a very high level of error correction with the Q setting for 25%.
    3. Reducing Data.  This is where I used some tricks you may, or may not, be able to replicate.
      1. URL Shortener.  A TinyURL link to my Instagram page requires 29 characters.  Looking above, this would immediately suggest a 21×21 pixel QR code would not be possible.
      2. Trimming a Link.  After some fiddling, I realized that as long as the data encoded looked like a URL (as in some characters separated by a “.”), the QR code scanner would interpret it as a link.  This means we can skip the “http://” and “https://”, saving 7-8 characters!  Unfortunately, this still doesn’t let me encode the shortest URL that TinyURL could give me which requires 20 characters after discarding the “http” stuff.
      3. Maybe Just a Domain?  Maybe you just wanted to point someone to your website and not a big long link, shortened with a URL shortener.  Let’s work the numbers backwards.  Most commonly used domains end with “.com”, “.org”, “.biz” – with 4 characters each.  Using the information above, this means we could use a domain name with up to 12 characters for an L encoded QR code, 9 for an M, 6 for a Q, and just 2 for an H.  While it would be easy to find a 12 character domain, you’re stuck with only a 7% margin for your error correction.  A domain with 6 to 9 characters for Q and M would allow for 25% and 15% error correction.  You can still find 6 character “.com” domain, but… they’re unlikely to be very memorable.  This isn’t necessarily a problem.  You might be able to find a good short domain with an unmemorable name, but forwards the user to your real website.  The problem, of course, is that no one is going to want to click on that link.
      4. How About a custom URL Shortener?  It’s still possible to purchase a short URL, but they’re pricey.  I happened to buy a good one several years ago and have hung on tightly to it.  I slapped a YOURLS install on it, and have been using it ever since.  Using my own URL shortener means I can keep the URL down to just 9 characters – including the TLD!

Okay, back to carving.  I grabbed my headphones, put on some music, and took it very slowly – a little under two hours.  Here’s some progress photos:

This slideshow requires JavaScript.

Here’s how it looked (with some additional shots to show the original design overlaid):

This slideshow requires JavaScript.

I stamped this design 9 times – and all 9 were more or less easily scannable.  The neat thing about this design is that it points to a URL shortener I own, so not only is it about as tiny as possible, but I can change the destination if I ever needed – without having to spend two hours recarving an eraser stamp!

Eraser Stamp Carving
  1. Carved Eraser Stamping
  2. Further Adventures in Eraser Carving
  3. DIY Carved Eraser QR Code Stamp
  1. I won’t get too much into the weeds on the actual method of generating QR codes, mostly because I haven’t studied the math in it, but I did find a great article which has a lot of good background info and explanations []
  2. I’ll call them “pixels” from this point forward []
  3. Just barely under an inch []

Further Adventures in Eraser Carving

I thought it would be neat to try cutting a QR code stamp.  (Skip to the end to see the one time I was able to get the stamp to work)

Getting the pattern ready for carving

Getting the pattern ready for carving

The obvious problem is this would require an incredibly detailed and precise approach to carving.  To get the smallest QR code that can still contain a URL, it would be limited to 16 characters, the lowest error correction (7%) rate, and would still have 21×21 pixels (441 total).  After a little testing, I realized the code needs a little white space around the QR code to read properly.  This means 23×23 pixels all carved into a less than 1″ square area.  I know from the design of the eraser carving station that the eraser is 24.5 mm wide… so each pixel is roughly 1mm square.

I tried several things that definitely did not work well:

    • Printing the design in one of my templates, trimmed, colored in with a pencil, taped in place, then rubbed onto the eraser to transfer the design.
    • This didn’t really work very well since the pencil trace to rubbing process introduces a lot of error.  I tested this by trying to scan the reversed drawing on the eraser.  Didn’t work at all.
    • The 1mm wide pixels would have been a nightmare to cut with even the smallest carving blade, so I switched to my craft blade.  The blade is so sharp and incisions so thin, that many times it was difficult to see where or whether I had made a cut.  Once I switched from a vertical cut to a 45 degree angle, it seemed to get a little bit easier and cleaner.
    • After I was about a quarter done I tried using a fine tip sharpie to color in the pixels.  After a lot of hassle, I could get this to scan, so I kept going.
    • The darkened pattern was still a bit messy and my cutting wasn’t significantly better.
    • I flipped the eraser over and tried a new tactic.  I taped a template to the eraser and tried to cut the design through the paper.  This didn’t work well because when I cut very small pixels out of the design, the paper quickly lost cohesion and then became useless.
    • Finally I pulled up a large picture of the QR code on my laptop and tried to keep to the design as best I could.  It wasn’t pretty – but I was done.

The results were less than stellar.  The leftover ink from the sharpie discolored the inkpad a little and got transferred onto the first few stamp impressions.  Out of a dozen different impressions, only one could be scanned by my phone.

Darkened with a sharpie, partially carved

Darkened with a sharpie, partially carved

If I tried this again (and, let’s be honest, I probably will) I would use the template / pencil transfer method just to place “landmarks” and then refer back to the large display on the laptop.

Stamp, stamp, stamp

Stamp, stamp, stamp

Lastly, I was able to get just one impression that could be scanned:

One single scannable stamp impression

One single scannable stamp impression

The reason the bit of paper is a little oddly shaped is that I had stamped onto a piece of scrap cardstock.  I’d stamped on other pieces of paper, cards, and even on that same piece of cardstock.  This was the one time it worked.

Eraser Stamp Carving
  1. Carved Eraser Stamping
  2. Further Adventures in Eraser Carving
  3. DIY Carved Eraser QR Code Stamp

Carved Eraser Stamping

I recently stumbled across the world of fantastically charming mini prints and carved erasers by Serena Rios McRae aka Cactus Clouds Art.  This short Instagram post provides an excellent overview of her process.

Serena’s artwork is evocative, accessible, and affordable.  I bought several of her prints the other day.  She also posts how-to’s on YouTube and provides plenty of links to her recommended supplies (Serena’s lists and affiliate links).

These looked like so much fun, I bought a pile of cheap pink erasers off Amazon, repurposed an old set of stamp carvers we had lying around (I had done some linoleum block printing back in high school and my wife had a small stamp making kit from years before), and gave it a shot.  The kids had a great time with this while I fretted about whether they were going to jab their fingers and how many bandaids I’d have to have handy.

After their first stamp, I hacked together a 3D printed holder.  Despite measuring the erasers carefully, it was too long and really, too big for what it needed to be.  Here you can see version 01 taped to a piece of mahogany wood left over from my ukulele project.

This slideshow requires JavaScript.

There were several problems with this first attempt.  The holder was a little too long, so the eraser would shift back and forth.  It was also much bigger than necessary.  I designed it with those large fins on the side to make it easy to tape down, but it really wasn’t necessary and just made rotating the eraser holder a little more unwieldy.  While my kids were carving things using this holder, I went to work printing a few accessories.

3D printed screw top blade container, extra blade handle

3D printed screw top blade container, extra blade handle

The blades came in a little plastic baggie, so I printed a bespoke screw top container for them so they can be stored securely.  I also printed another blade handle so that two people could carve stamps at the same time – one using the original wooden holder and the other using the printed holder.

The next version was more compact and had dimples on the edges which I hoped would make it easier to hold.  I also added some little ridges inside so the eraser wouldn’t fall through.  Here they are:

Eraser holders for carving, versions 1, 2, 3, 4, and 5

Eraser holders for carving, versions 1, 2, 3, 4, and 5

The dimples didn’t work.  They weren’t deep enough and my hand couldn’t really grip it very well to keep it from moving while I was carving.  The area for the eraser was a little too long.  Versions 2-5 involved tuning the length just right.  Each one takes about an hour to print and used about $0.30 of plastic.  The final result fit the erasers like a glove.  They nestle in the holder perfectly and are easy to poke out using the little hole.  Admittedly, they might only fit the specific cheap erasers I found.

Here’s my process:

I created a page of eraser templates, which match the length and width of the large and small edges.  Of course, the long section matches the long side of the eraser – but the shorter section only matches the short side of the eraser if you tip it over.

Eraser templates

Eraser templates

I got to use several iterations of the eraser holder for this next section:

All the pieces, laid out nice and orderly

All the pieces, laid out nice and orderly

The process is pretty easy.  Put the eraser in the eraser holder – it should slip right in, drop in snugly, and lie flush with the top edge of the plastic holder.  After cutting out a paper strip, it’s trimmed to size, creased to locate the central point, and a pencil drawing (drawn as I’d like to see it printed).  This is taped upside down onto the eraser, rubbed along the back (a coin would work very well, but I just used one of the extra eraser holders), and the design is neatly transferred to the eraser.  The neat thing about this process is that I could design something in Inkscape, print it into the template, and color it in with the pencil for transferring to the eraser.

Lastly, let’s see the result!

Eraser stamp!

Eraser stamp!

As you can see, the final stamped result matches the orientation of the little drawing.  I just wish I’d saved the little scrap of paper with the original drawing on it!  The eraser holder was a joy to use and the final result looks every bit as great as I was hoping.

If I keep making these, I’ll probably want to upgrade my setup to include Serena’s recommended stamp pad and sharpener (you’ll see them linked in Serena’s Amazon link above).  I’d like to design something to make easy to hold the eraser, center it, and make a clean even stamp, but don’t have a great idea for one yet.  I’ll keep pondering this and maybe whip something up this weekend.

Eraser Stamp Carving
  1. Carved Eraser Stamping
  2. Further Adventures in Eraser Carving
  3. DIY Carved Eraser QR Code Stamp
  1. I mean, I guess it’s version 1 – but I labeled all the purple ones starting with 1 so… []

Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II

I recently posted my method for making DIY heat transfer vinyl t-shirts without a craft / vinyl cutter.  I used the process to make an Avatar: The Last Airbender themed t-shirt, then a set of four Fallout themed t-shirts for the entire family.  After that I designed, cut, and ironed several more t-shirts. (You’ll see me refer to ironing the design several times, but each time I ironed the vinyl through a piece of parchment paper, to protect the design from scorching and the iron from being marred by melted plastic)

I learned a few more things along the way and thought I’d share these newb-mistakes and pro-tips.

But first, how about some pictures?!

This slideshow requires JavaScript.

  1. Cutting Designs
    1. Just be careful and go slow.
  2. Design Size
    1. I tend to make designs that are no more than about 6″ wide.  This has seemed to be a really good size to show off a cool design, but also fits neatly in the center of an 8.5″x11″ piece of standard printer paper.  You could make something a lot larger, but for all of my designs, this has worked out really well.
  3. Preparing Designs
    1. I forgot to take a picture of it, but it helps to draw an X and Y axis into your drawing.  The purpose of this is to help orient your design at the center of the fabric.  After I had cut out the design entirely, I then used the craft knife to cut triangles into the protective layer pointing towards the center of the XY axis center of the design.  Then, once this was done I could draw the XY axis lines on the protective layer.
    2. I used a yard stick to estimate the center line of the shirt, which I could then align with the XY axis lines on the design itself.
  4. Position Your Design
    1. After looking at various other t-shirts, I decided they tended to look best when the top of the design was about 3″ lower than the bottom of the “V” in my v-neck shirts.
    2. Once I had the shirt on the ironing board, I also put pieces of masking tape with a pen line on the ironing board to help me position and orient the yard stick repeatedly.
  5. Heat / Press
    1. Unlike my first attempt, I made sure to really push hard on the iron.  The idea is that you’re not just melting the vinyl adhesive, but actually melting it into the fabric.  If your iron isn’t hot enough, you’re not ironing long enough, or you’re not pressing hard enough, it won’t actually melt into the fabric.
    2. When you’ve melted it properly, you should see an almost… bubbly texture underneath the protective coating.  Then, once the vinyl is cool and you’ve peeled the coating off, the vinyl should look a little rippled since it is taking on the texture of the underlying fabric.
    3. This slideshow requires JavaScript.

  6. Iron, Cool, Wait, Inspect Vinyl, then Peel
    1. I made this mistake with the arc reactor t-shirt.  As I peeled the protective coating off, in one spot the vinyl got pulled up and in another spot it tore the corner off a sharp trapezoid in the design!  While it is possible I didn’t have the iron hot enough or press hard enough, I think the most likely explanation is that I didn’t wait long enough for the vinyl to cool – so it was still molten enough to be adhering to both the shirt and protective coating, causing the design to be damaged and torn.
  7. Peeling Direction
    1. If your design includes very thin or sharp little pieces (such as the pointy trapezoids in the Iron Man arc reactor), consider changing the direction of the protective coating peeling to avoid peeling towards a sharp point.  These little points have so little surface area they can easily stay stuck to the coating and get pulled off the shirt, ruining all your hard work.
  8. Repairing Mistakes
    1. The problem with making a mistake with heat transfer vinyl is that if you make a serious mistake to your design or application, you may have ruined a shirt.  (I would 100% wear a comfortable shirt even if the design wasn’t perfect.)  However, a little mistake doesn’t have to be the end of the world.  I made two mistakes on my arc reactor t-shirt, that I was able to fix well enough that they probably wouldn’t be obvious to the casual observer.

      Yellow arrows show where the design pulled up and wrinkled slightly. The red arrows point to where the design tore and was repaired.

      Yellow arrows show where the design pulled up and wrinkled slightly. The red arrows point to where the design tore and was repaired.

    2. The design of the arc reactor is about 3″ across, to give you a sense of the scale and size of the mistakes.  You can see two slight wrinkles in the vinyl, pointed out by the yellow arrows.  The red arrows points to where you can barely make out what appear to be wrinkles – but show where the design was torn and repaired.
    3. I didn’t find any really good way to fix the wrinkles, other than to really iron those areas very very hard.  It mostly pressed the wrinkles flat and they’re barely noticeable on the shirt.  Between the shimmery / reflective quality of the vinyl and uneven way a shirt would hang on a non-rectilinear organic body or form and the size of the wrinkles on the small design, it’s almost imperceptible.
    4. The torn design was initially quite heartbreaking.  By the time I had worked on this shirt, I had already created five other shirts without any kind of mistake.  It just so happened I either incompletely cut the design out (I don’t think so) or was a little impatient as I peeled the design (probably), and tore a pretty big piece off of the end of the right side trapezoid pointed out by the red arrow.  I tried to use my craft knife to peel the tip of the trapezoid off the protective coating, but it wasn’t working and I ended up mangling it beyond repair.  After stewing a bit, I figured I would simply cut out a new trapezoid piece and iron down over the torn piece.  I made sure to cut the new piece very slightly larger (we’re talking probably only 0.5 mm in each direction) and position it carefully over the damaged section, before ironing it down very firmly, waiting for it to cool down all the way, peeling the coating, then ironing it again.  Once again, I think the damaged portions wouldn’t be noticeable to most observers.

I would guesstimate a 5-foot long and 12″ wide roll of heat transfer vinyl could comfortably make 10-15 good sized designs and as much as 20 if you’re very careful.  Let’s say you can only make about 14 designs out of a roll, to be on the conservative side.  At about $7 for a basic color roll, this about $0.50 worth of vinyl per shirt.  My wife bought me several 2-pack blank v-neck shirts in assorted colors for about $14 per pack.  Ignoring the cost of my time (it’s a hobby, remember!) this is only about $7.50 per custom shirt.  I think this could make a really cool and inexpensive project for a class, letting all the kids make their own designs (by cutting the vinyl with scissors instead of craft knives, if they’re young) or to create a set of team shirts for a field trip or club.

Not only has this been a very fun and inexpensive hobby, I end up with a great looking custom t-shirt at the end that will probably last years.

I’ve got several more designs I’m working on and look forward to a few more updates.

Heat Transfer Vinyl T-Shirts (Without a Craft Cutter)
  1. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter
  2. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II
  3. Heat Transfer Vinyl T-Shirts Without a Craft Cutter (2023)

Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter

I’m going to commit the sin of a thousand online recipe websites and give you a bit of backstory before I get to the method.  If you don’t like fun, feel free to skip the first few paragraphs.

I recently watched Avatar: The Last Airbender and Avatar: The Legend of Korra with my kids. 1  Both shows were fantastic, but one particular character from A:TLOK was my absolute favorite. Varrick Iknik Blackstone is a fast talking, sometimes erratic, flamboyant industrialist / inventor voiced by John Michael Higgins.  Imagine a cross between Tony Stark and Zaphod Beeblebrox.2

Psst... Do the thing!

Psst… Do the thing!

You can find a few t-shirts out there which feature Varrick’s catchphrase3 and logo for Varrick Global Industries… but they all seem to suffer from at least one flaw.  They all appear to depict the logo mirror flipped with the big sail on the right hand side. I think I know why too.  An artist under the username of RogerBernstein on DeviantArt posted a very large, high quality version of the Varrick Global Industries logo in 2017, which just so happened to be mirror flipped.  His image has the distinction of being one of the first Google Image search results for “Varrick Industries Logo.”  I’m thinking people swiped his work, perhaps altered it a little bit, and then slapped it on t-shirts.  I mean… just look at this…

This doesn't look right

This doesn’t look right

Why am I so sure these logos are mirror flipped?  I paused TLOK during scenes in Season 2 – 4 when you can see Varrick’s yacht, near a plane, on a plane, on a jacket, and near some jewelry.  Now, I’m not even close to the kind of cosplayer / propmaker who has the patience, concentration, or dedication who can recreate their favorites props with meticulous planning, research, measuring, and endless revisions.  Even so, I’d at least like my designs to face the same direction as the show.  There are lots of other pictures showing this orientation, but this was the easiest one to locate.

The logo is partially visible on the yacht to the right side of the image

The logo is partially visible on the yacht to the right side of the image

Anyhow, with the help of GIMP, Inkscape, the pause button, and my trusty laser printer, I created my own design for the Varrick Global Industries logo – ready to put on a t-shirt.

  1. Basics
    1. Creating a design with “heat transfer vinyl” is reasonably straight forward.  The heat transfer vinyl is a thin sheet of vinyl stuck to a sheet of clear plastic with a mild adhesive.  You cut away what you don’t want, leaving the mirror of your design still stuck to the clear plastic, turn it over on a piece of fabric, and melt / fuse the design onto the fabric with heat.
    2. With access to a craft cutter ($250 – $1,000) and a heat press ($100 – $300), you could automate a lot of cutting work (but you’d still have to manually pull the excess vinyl out of the design) and have really fine control over the heat (if that was important to you), but none of that is actually necessary.  While these things might be helpful if you creating designs all the time, you don’t really need much more than some heat transfer vinyl and stuff you already have (a way to cut it, an iron, and some fabric).
  2. Materials
    1. Heat transfer vinyl.
      1. Also known / marketed as “HTV,” you’ll probably want to look for “stretch” or “stretchable” heat transfer vinyl if you intend to putting it on wearables like a t-shirt or similar.  If you’re not putting it on a wearable, you could probably get away with non-stretchable HTV.
      2. As this was my first such attempt, I went with some relatively cheap stuff that was only $9 for 5-6 feet worth of material.  I bought two rolls – one was a blue-purple metallic “chameleon” and the other was a dark silver-gray reflective.  Under normal indoor light conditions both look fantastic.  In brighter light they’ll look… well… brilliant.
      3. Pro Tip:  If your HTV came in a roll and packed in a box, consider keeping the box.  I normally discard boxes, but this way I can stack the rolls easily without having them roll away.
    2. Craft knife & Cutting Mat.  You may not be using a vinyl cutter, but you’ll still need a cutter.  If your design was very simple or you wanted to live dangerously and freehand it, you could probably get away with just using scissors.  We have an old medium size (12″ x 18″) cutting (possibly self-healing?!) mat which works well for most of our purposes.  These days they’re relatively cheap and definitely worth springing for a 2′ x 3′ model.
    3. Printer paper or Sharpie.  I created my design on the computer and printed it out (mirror flipped), then taped it to the HTV, then taped that down on the cutting mat.  If you wanted to just freehand your designs, you could just freehand the design directly on the HTV first.
    4. Tape.  Masking or blue painter’s tape.  The HTV arrived rolled up pretty tightly, so it definitely wanted to roll up while I was working.  The tape kept everything down and in place while I worked.
    5. Iron.  The HTV I purchased recommended applying heat for 5-15 seconds at 300 – 330 °F.  Our iron doesn’t list the temperatures – just the settings for different materials.  I ended up using the “Wool” setting based upon 30 seconds worth of internet research and going to Wikipedia.  The Wikipedia article suggested wool, silk, and polyester would all result in about 300 °F temperatures.  While I can’t vouch for the actual temperatures, the wool setting worked really well for me.
    6. Ironing Board.  I suppose an ironing board isn’t strictly necessary.  But, it sure was nice to have a big, flat, soft, narrow surface to lay my shirt on in order to iron it flat.  You could probably get away with putting down a blanket on a board or some sheets on top of some cardboard or a table.  However, if you already own an iron, chances are you’ve got access to an ironing board.
    7. Parchment Paper.  I used parchment paper because it’s cheap, plentiful, and non-stick.  It’s also slightly translucent, which makes it great for making sure everything is positioned properly and visually seeing when the design is starting to melt into place.  I’m sure there are lots of other nonstick options, but this worked well enough that it would definitely be my go-to in the future.
    8. Optional:
      1. Yardstick.  This is helpful in finding the center line for the t-shirt when you’re ready to apply the design.  It’s helpful, but not necessary.  Since you’re just using it as a straight edge, you could make do with just a long piece of straight cardboard.
      2. Specialty Tools.  You can buy specialty tools for “weeding” heat transfer vinyl, special tools for centering designs on shirts, and special heat pressers to apply vinyl.  For a few shirts now and then, I don’t think any of these are necessary.
  3. Process.
    1. A Note On Double-Checking.  As the old saying goes, measure twice and cut once.  While there are very few “mission critical” steps to this process, there are a few points where it makes a lot of sense to spend the time to legitimately completely check and then double-check something.
      1. Double-Check the Vinyl.  Depending upon the type of HTV you get, it might have two or three layers.
        1. Two Layers.  If it is two layers, there will be a thick clear/clear-ish protective plastic coating and the vinyl.  The side of the vinyl facing the protective coating is the part that will appear on the outside of your fabric and the side without the protective coating is the part that will melt and adhere to your fabric.
        2. Three Layers.  When there three layers, the vinyl will be sandwiched between the thick clear protective plastic coating and (at least in my case) a blue film on the back.  Again, the side of the vinyl facing the protective coating is the part that will appear on the outside of your fabric and the side with the thin film is the part that will melt and adhere to your fabric.
      2. I would recommend checking your HTV by cutting a thin corner off and peeling it to see how many layers you have.  I was alerted to this two/three layer issue by reading a lot of reviews.  My chameleon blue-purple vinyl had three layers and the dark gray reflective only had two.  You could probably remove it before you started cutting out your design, but you’ll definitely need to remove the film layer before ironing.
      3. Pro-Tip:  I would also recommend labeling the box your HTV is in with “two-layer” or “three-layer” to help yourself remember which kind you have when you come back to make a new design next time.
    2. Double-Check the Design.
      1. For most applications, you’ll want to mirror-flip your design.  You can do this in the graphics design program of your choice, probably using some printer settings.
      2. Pro-Tips:
        1. If you’re trying to create a vinyl pattern from some photograph, magazine page, or similar, you might want to photocopy it and then trace the design onto the back of sheet it’s printed on using a lightbox.
        2. Unless you’re creating a multi-layer process, consider making your entire design two-tone black and white.  When it comes time to cut out your design, this will make it a lot easier for you to remember which parts should be cut away and removed.
        3. You’ll be removing lots of areas from the vinyl in a later step.  There’s no harm to your design if you “over-cut” into these areas.  Overcutting allows you to ensure you’re definitely separating sections of the design from the parts that will be discarded.  I would recommend actually drawing in these “over-cut” spots into the design, either as part of the design process or manually with a pen after the design has been printed out.
        4. I like to add the word “reversed” to the design, so I’ll remember to actually mirror flip it.
        5. Since most anything I’ll be creating will fit on a t-shirt, I like to make my designs fit into a standard 8.5″x11″ sheet of paper.  I created a template to do this which has several guidelines and a border 1/4″ all the way around the sheet to make sure the design can be printed within the printer’s margins.
    3. Apply the Design.  As suggested above, you could cut out your design with scissors or perhaps even built it out of scraps of vinyl.  If you wanted to create lettering or follow a very precise pattern, I’d definitely suggest designing on a computer, printing it out (reversed), then taping the design to the vinyl so it doesn’t shift as you cut it, and taping the vinyl to the cutting mat so that doesn’t shift as you cut.
    4. Cut the Design.
      1. I used a craft knife and went slow, using steady medium-hard pressure to cut out the design.  When I wasn’t sure I had cleanly cut all the way through the vinyl, I went back and cut that area again.  Having done this a few more times since I started the blog post, I can say that I didn’t need to cut this hard – and could have used a medium pressure.  More than this and the clear plastic layer gets cut or scored.  This isn’t a problem, but it doesn’t lay flat quite as well any more.
      2. As you cut, be mindful of the areas you’ll be removing that you can “over-cut” into and those areas of your design where you won’t want any knicks and cuts.
      3. I made a point of “over-cutting” the critical pieces, especially at corners, because I did not want to chance the vinyl tearing as I removed the excess pieces.  A single section tearing or stretching would basically ruin the entire design and require starting over.
      4. I had to be sure I was cutting through the printer paper and cleanly through the vinyl, even at the risk of gouging the protective layer.  I was very surprised the protective layer held up as well as it did.  It was clearly scored where I had cut into it, but except for some very small parts, I never cut all the way through it.
      5. Once your design is cut out, use scissors to cut the entire area out of the vinyl roll.  I like leaving a 1/4″ allowance everywhere just so I know the scissors aren’t going to affect my design.
      6. Pro-Tip:  Before you start cutting, it might help to take a moment to plan out your cuts, draw in the areas for “over-cutting,” and even to make sure to darken in those areas that will be getting cut out to help keep things clear while you’re cutting.
    5. “Weed” the Vinyl.
      1. “Weeding” the vinyl is the process of pulling out all the vinyl pieces you’ve cut out that aren’t part of the design.  While there are lots of cheap weeding tool options for sale online for $5-10, I just used the point of my craft blade to pick these little pieces out.  I suppose it might help to have tweezers, a pushpin, a paperclip, or a toothpick, but the craft knife worked perfectly for me.
      2. I’d recommend going slowly, especially at corners, and making sure the parts getting removed are fully cut free from the design elements that are staying.
    6. Iron Fabric.  Definitely take the time to iron your fabric flat.  It would be a shame to discover a wrinkle on the underside of your t-shirt because the design was warped only after the vinyl was fused to the fabric.
    7. Orient the Vinyl.
      1. Once my pattern is cut and weeded, it’s ready to be placed on the t-shirt.  You can buy patterns, templates, and devices for centering a design on a t-shirt, but these seem unnecessary if you’re willing to simply be careful.  Heck, even if you had these specialty tools, you’d still need to be careful.
      2. I made sure my t-shirt was flat and centered on the ironing board, there were no wrinkles in the fabric, the amount of the shirt hanging on the left and right sides were about equal, and then used a yardstick to estimate the center line of the shirt running from the tag down.
      3. I put the design about four inches down from the neck in my shirt after looking at the designs on other t-shirts I had purchased.
      4. If you chose to cut out your design so there was a little extra room all the way around it, the empty clear protective plastic layer will still be “tacky” and help keep the design in place.
      5. Pro-Tips:
        1. It wouldn’t hurt to double-check that you’ve got the exposed vinyl side facing the fabric.  You definitely don’t want it melting against the parchment paper or your iron.
        2. One of the nice things about printing the design with guide marks and registration marks was that it made it a little easier to orient the design neatly on the shirt.  I printed a second copy of the design, then placed it on the shirt – then put the vinyl design down on the shirt underneath the paper.
        3. Before you place the vinyl on the fabric, take a moment to double check there are no stray pieces of weeded / discard vinyl stuck to the protective layer.  They’ll be impossible to remove once you’ve started ironing.
    8. Cover with Parchment Paper.
      1. My design was only about a 6″ diameter circle, so I only needed a piece of parchment paper slightly larger than this.  Since the parchment paper isn’t really consumed by this process, I went ahead and got a big square of it so I can reuse it on other shirts.
      2. The parchment paper I’m using is slightly translucent, which made it easy to ensure the design hadn’t shifted and so I could make a few last second adjustments.
    9. Iron The Vinyl.
      1. Obviously, read and follow the directions for your specific heat transfer vinyl.  The vinyl I purchased recommended 300 – 330 °F for 5 to 15 seconds.  I don’t have a fancy iron, so I heated the iron to the “wool” setting (estimated to be 300 °F) and ran the iron over the parchment paper, pressing firmly, in a small circular pattern for about 15 seconds in each area.  I kept the iron moving so as not to scorch any part of the design, the shirt, or the parchment paper.
      2. Pro-Tips:
        1. It never hurts to do a few test pieces.  I tried ironing both kinds of HTV onto an old undershirt to make sure the heat settings worked, I understood which sides needed to face against the fabric, how I would remove the backing once it had been ironed, and how it all worked.
        2. Having now done this a few times since I started the blog post, I would recommend putting something rigid or semi-rigid under the shirt.  The first time I ironed the design, it looked great – but came out slightly wrinkly in the wash.  I re-ironed it using really heavy pressure and the same shirt has held up in the wash ever since.
    10. Remove Backing.
      1. The instructions for my vinyl told me to “hot peel” the backing.  I took this to mean that I should carefully remove the clear protective coating from the heat fused vinyl.  There were a few small spots where it looked like the vinyl wanted to come up a little bit, but the backing came up cleanly everywhere.
    11. Cover and Iron Again.
      1. Since there were a few small spots where it looked like the vinyl might have come up slightly as I was removing the backing, I put the parchment paper back down and ran the iron around the entire design for about 5 seconds in each spot.
    12. Don’t Wash for 24 Hours.
      1. My instructions say to wait 24 hours before washing the garment.  I spent a while on this design, so I wasn’t about to chance it by throwing the shirt in the wash.
    13. Iron Again (Optional).
      1. After I washed the first shirt I made, the design appeared to have buckled slightly.  After a second ironing, it has stood up to repeated washings without a problem.

This slideshow requires JavaScript.

Heat Transfer Vinyl T-Shirts (Without a Craft Cutter)
  1. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter
  2. Heat Transfer Vinyl T-Shirts – Without A Vinyl Cutter, Part II
  3. Heat Transfer Vinyl T-Shirts Without a Craft Cutter (2023)
  1. I’m going to reference these shows and their contents a lot.  I don’t own their intellectual property, they do, I just wanted to make a fun t-shirt for myself. []
  2. Those who know, know. []
  3. Do the thing! []

Fixing the Acer Aspire 5 Bluetooth Disappeared, Missing, or Not Working Issue with Windows 10 Update

I own an Acer Aspire 5 and every time there’s a Windows update, the Bluetooth adapter stops working.  Working from home, noise cancelling Bluetooth headphones are a necessity.  This problem reoccurs infrequently enough that I don’t really remember how to fix it – but frequently enough that I want to make the next time I do it a lot easier.

  • Find the model number for your Acer Aspire by right clicking on “This PC” and looking for the model name and number under “Device specifications.”
  • Download the latest drivers from Acer’s website by searching for the appropriate model number.  Mine is here.
  • Install these, if you want, but the only thing that really helps is uninstalling the Acer Quick Access utility.  All the above steps didn’t do much for me.  This one step plus a restart immediately fixed the problem.

    Step One: Uninstall Garbage

    Step One: Uninstall Garbage

  • Okay, well, that lasted all of a few days.  The Bluetooth adapter again blinked out.  I did all the nonsense (resinstalling drivers, uninstalling Acer garbage, restarting, etc), but this fix worked for me instantly after the prior one failed me.  Open “Device Manager,” scroll all the way down to “Universal Serial Bus controllers,” right click on “USB Root Hub (USB 3.0),” click “Disable Device,” let the screen refresh, then “Enable Device.”  When it popped back, the Bluetooth icon was back!
    Disable, Enable the USB Root Hub!

    Disable, Enable the USB Root Hub!

     

  • I have to go through some variation of this process, Windows breaking my Bluetooth drivers, every few weeks/months.  Just long enough for me to forget the optimal way to restore these.

Anyhow, I hope that fixes it for you too!

Learning Curves and Ukuleles

Watch the curves

1. Background

About two years ago I received a ukulele for Father’s Day and started playing it.  It’s an instrument I’ve always been interested in, but nothing I’d ever put any effort into. Thanks go a world-wide pandemic1 I had a little extra time on my hands and figured I’d really give this a shot. Who knows, maybe I’d come out the other side of this pandemic with a new skill? Two years on and I can play several songs, carry a tune, and find it relaxing and enjoyable to play.

1. Focus + Practice + Time = New Skills

Part of my approach was to see if I could set aside some time every day to devote to learning.  I thought back to a TEDx talk by Josh Kaufman entitled, “The first 20 hours — how to learn anything.”  Josh outlines his process for learning the ukulele in 20 hours.

The essence of this talk is stuff we’ve heard a hundred times before.  Small incremental improvements become big gains over time.  Josh cites Malcom Gladwell’s theory that “ten thousand hours is the magic number of greatness” as argued in his book “Outliers” but points out the 10,000 hours is to achieve world-class, expert-level greatness.  Josh argues all you really need is twenty hours of focused deliberate practice to be pretty good at something. 2  This is amusingly similar to the Pareto Principle that “for many outcomes, roughly 80% of consequences come from 20% of causes.”  This 20% of world-class effort, spread out over time, leads to surprising incremental improvements. 3 4  But, effort and time isn’t enough – it’s the particular focus.  Fenyman’s learning technique is uniquely designed to help identify these features.  A gross oversimplification of this method is: write down the steps as if you were explaining it to someone5 , identify gaps6 , organize / simplify and go back to the first step.

2. My Learning Process

What does all this rambling mean?  This website tends to be my sketchbook / journal for projects – especially projects where I am starting from scratch.  When learning a new topic or skill, my approach tends to be:

  1. Write down everything I know / have learned
  2. Identify gaps
  3. Break the skill into smaller chunks or modules
  4. Research chunks
  5. Memorialize what I’ve learned
  6. [Practice]
  7. Goto line 1

I used a similar process when it came time to build my first 3D printer, my first drawing robot, and vacuum former.  My two year ukulele playing progress could be summarized as follows:

  1. Watched this ukulele tutorial series by “Andy Guitar,” probably dozens of times, while trying to follow along on my ukulele
  2. Found songs using the easiest beginner chords (Am, F, G, C)
  3. Retyped song lyrics, with the chords interspersed, in a way that made sense to me7
  4. Practiced those chords and songs
  5. Found more songs using additional chords (Dm, E7, Em, D, etc) and repeated steps 2-4

2. Building a DIY Travel Ukulele

But, this post isn’t about playing the ukulele.  It’s about building a ukulele.  Documenting all of this helps me organize my thoughts, get them out of my brain (since I know I can always return here to find them), and free up my attention to move onto new problems.  (Perhaps most importantly, it lets me close dozens of browser tabs.) I’m not sure how I first stumbled across Daniel Hulbert’s YouTube videos and website, but ever since seeing some of his designs, I haven’t been able to shake the idea that I want to build my very own quiet little travel soprano ukulele.

If you’re following along so far, I’d warn you that as I’m writing this I just have a piece of wood with some holes in it and bits of hardware lying around.  I would not consider what I have to be a tutorial at all. 8

1. Existing Tutorials, Resources, Examples

After looking at Daniel’s various designs, I also looked at several travel ukuleles (most inspired by Daniel’s work):

I designed a 3D printable model, but have yet to print it.  As I worked on the design, I deconstructed other designs I’d seen, looked at the important parts, including some from Daniel’s templates, and tried to keep the critical components and think about the various design choices he made in building his own instruments.  However, I don’t think I ever will try to print this.  From a learning perspective, it was an excellent exercise – but I think I’d much rather have a wooden travel uke.

2. Anatomy Lesson

First, a bit of anatomy, swiped borrowed from the Kala website.  (I wanted to leave a message letting them know I was borrowing the image, but the post doesn’t allow comments.)

Parts Of The Ukulele - Kala Brand Music Co.

Parts Of The Ukulele – Kala Brand Music Co.

3. Everything I Know So Far

The following list is a combination of several of Daniel’s blog posts, PDF downloads, and resources he cites.  I will try to include the links to those references.

  1. 1. My Goals

    1. I want to make a soprano size acoustic ukulele with a shape similar to Daniel’s “travel [concert sized] ukulele (2015),” “backpacker travel [concert] ukulele (2015),” and “travel [concert] ukulele (2012)” but using the elements of his “basic hand tools.”  The reason for the soprano size is because that’s the scale of my regular acoustic ukulele.
    2. The reason for wanting to use Daniel’s DIY hardware store components instead of fret wire for the frets is because I want to avoid the pitfalls described by Anders Strand in this blog post.  If the slots for the fret wire aren’t cut to the same depth, well spaced, inserted to the same depth, and leveled properly, the instrument is likely to sound, to use Ander’s word, like “garbage.” 9  Daniel’s “hand tools” ukulele utilizes pieces of cotter pins super glued to the wood in place of this more exacting process.
  2. 2. (Re)Arrangement / Design Considerations

    1. Most of Daniel’s travel ukuleles use a “zero fret” instead of a “nut” to guide the strings on their way to the tuners.  This lets him basically invert the strings, tying the strings above the zero fret where the nut would otherwise be, and place the tuners between the fretboard and the bridge.
    2. Chris Russell’s review of Daniel’s special custom travel ukulele had very few negatives and made a lot of interesting points.  The head of the travel ukulele was tapered so as to allow it to be placed into a holder.  Extending the head a little would allow it to feel more like a full sized ukulele.  Recessing the strings into the head would allow them to be out of the way and less pokey.
  3. 3. Zero fret, frets, bridge

    1. The strings should have a slight incline from the nut (or zero fret) until it reaches the reach the bridge.
    2. Zero fret made from half of a 5/32″ cotter pin
    3. Remaining frets from half of 3/32″ cotter pins
    4. Bridge from a 3/16″ tube (aluminum, steel or styrene), about 3″ wide
  4. 4. Fretboard

    1. Of course, there’s no reason you couldn’t just buy a pre-made/slotted/measured fretboard and glue that down instead of messing with clipping cotter pins in half.  These are widely available on Amazon, with fretboards, slotted fretboards, and pre-assembled fretboards available over at StewMac.com.  If this scratch built ukulele doesn’t pan out, I might give that a try.
  5. 5. Strings

    1. Fret calculator and guidance on how to use it
  6. 6. Tuners

    1. I’ve got these cheap ~$10 tuners on hand, but if this travel ukulele works out alright, I would definitely throw down for a set of the ~$30 Graph Tech tuners Daniel uses.
  7. 7. Super Glue

    1. I’ve always had horrible problems with super glue.  It always dries completely up before I ever get a chance to use it.  Fortunately, my twitter friends came to the rescue and recommended several brands:
      1. Mercury Adhesives M300M (suggested by @EMSL)
      2. Gorilla Glue (@MattStultz)
      3. Loctite (various)
      4. Bob Smith Industries (various)
    2. I haven’t tried it yet, but supposedly baking soda will help super glue cure faster
  8. 8. Wood

    1. Anders recommends against using normal wood in favor of hardwood.  While he doesn’t say why, I suspect it is because the strings were biting into the softer wood, causing the holes to widen slightly, and the ukulele to continually go slightly out of tune.  He suggests the wood could be sourced from a cutting board, which seems like a pretty neat idea to me.
    2. Dimensions
      1. About +16 inches long (extrapolated from design)
      2. About 3 inches wide
      3. About 0.75 to 1.0 inch thick
  9. 9. Turn Around

    1. The turn around could be fashioned from an aluminum tattoo machine grip.  Searching for “tattoo machine aluminum grip” on ebay seems to turn up some acceptable variations.  The most good looking one appears to be about 2″ wide and a little over 3/4″ in diameter.  Ebay links to particular auctions tend to go bad pretty quickly, so without any form of endorsement, I’ll link to the seller here too.  (I’ve tried to save the auction page in Archive.org for future reference).

      This slideshow requires JavaScript.

    2. However, since I have a 3D printer, these seem very printable.  Anders was kind enough to post his 3D models for the parts of his ukulele.  The design of the turn around is pretty simple.  I published my own version on Printables.com.  The model is little more than a 16mm diameter, 50mm long cylinder with a 5mm bore, some ridges for strings (spaced -17.75, -5.5, 5.5, and 17.75 from the center), and a flattened side to make it easier to print.  These measurements came from Anders’ own work.  I suspect the diameter, more, and ridge depths are immaterial, while the spacing is a little more important.
    3. The hardware for the turn arounds were a lot harder to track down.  Daniel uses these super cool screws that go by an absolutely astonishing array of names.  Chicago screws, Chicago bolts, sex screws, posts, binding posts, etc.  Depending upon which one you search for, you’ll either find nothing, lumber, metal stakes, random screws/bolts, or something altogether very different.  I’d found a truly dizzying array of options from McMaster-Carr, Home Depot, Lowe’s, Amazon, and a few other specialty sites.  Fortunately, Daniel was kind enough to point me in the direction of these posts (with a #10-24 coarse thread size) and patiently explain he uses two of these with about 3/4″ of threaded rod between.
    4. There are some really nice looking black oxide posts on Amazon and elsewhere, but they tend to be metric, which then means drilling a metric hole, finding metric threaded rod…  Because I like the look of the black oxide coated hardware, I was contemplating using some metric set screws in their place.
    5. I had considered using just one with a longer #10-24 machine screw10 on the other side – then I realized the screw side would be too narrow, creating a tilted turn around.  Two posts it is.  :)  I don’t know the diameter of the post, otherwise I’d list that here.  Another possibility is using post extensions.
    6. Sometimes as I’m doing a deep dive on a project, I have an idea for an improvement or a way to do something in a different way from the original.  It’s around this point imposter syndrome kicks in and I wonder “Is this actually a terrible idea that was already discarded by others?”  I am sure the main point of having a post / threaded rod / post sandwich for the turn around is to ensure there’s a length of metal running through the turn around.  It’s probably even more important if the turn around is made of plastic.  Then again, what if there was a 3D printed turn around which had two spots for captive nuts and there was space on either side for two long machine screws / bolts?  It would probably have most of the strength of a solid piece of metal running all the way through, far easier to source (and in black oxide hardware!), and fairly easy to assemble.  Printing in plastic allows such cool options, such as embedded / captive nuts, why not leverage that ability here?  A sketch:

      Turn around sketch for 3D model, using captive nuts

      Turn around sketch for 3D model, using captive nuts

  10. 10. Ordering

    1. I haven’t ordered all the parts, but it looks like the most likely route is for me to place an order with Home Depot and Amazon for the various parts.  I’ll post links if/when I get the full shopping list together.
  11. 11. Tools

    1. Drill and drill bits for the tuners and turn around
    2. Hacksaw to cut out the rough shapes, possibly cut threaded rod if I was using that
    3. Coping saw to cut the interior area out nicely
    4. Nippers (left over from some tilework) to cut the cotter pins
    5. Files and sandpaper for taking the rough edges off the cotter pins and shaping the neck
  12. 12. Process

    1. Create template
    2. Transfer template
    3. Drill holes before cutting out the center, this way the wood in the center won’t splinter
    4. Cut rough shape of ukulele
    5. File, sand, and shape
    6. Glue cotter pins
    7. File, sand, and shape
    8. Add tuners, bridge, and turn around

I guess the next step is getting these ideas off paper11 and ordering some stuff!

Default Series Title
  1. I guess that’s redundant []
  2. He references his research for this figure, but doesn’t mention where it came from.  Perhaps it’s in his book?  I checked it out from the library, so I’ll let you know. []
  3. I’m trying to find a good place to mention the Japanese word for the process of continuous improvement is “kaizen.” []
  4. Another great distillation of these ideas is that 1% improvement every day for an entire year yields a 37.78 times improvement overall. []
  5. Thus, these words! []
  6. Thus, the open questions I’ll pose throughout []
  7. I like this style []
  8. A cautionary tale? []
  9. If you choose to go that route, Daniel’s guides should be helpful. []
  10. Machine screws being screws that don’t have a sharp tapered tip []
  11. Or, the screen? []