A website just about drawing robots

Itty Bitty Tiny CNC Drawing Robot

Itty Bitty Tiny CNC Drawing Robot

Lately I’ve been working on drawing robots more and more. My latest creation is an itty bitty Tiny CNC drawing robot. I’ve already published the files and Arduino sketch on Thingiverse, but you’ll find all of the instructions over on my PlotterBot blog.  While this site is about 3D printing and random nonsense, I’ve tried to only post stuff directly related to drawing robots over on this new website.

If drawing robots are your cup of tea, then please take a minute and check out my other side.  :)

PlotterBot.com – a new site dedicated to drawing robots

Moving time!

Moving time!

I’ve been working on and blogging about my PlotterBot, through several incarnations, for a little over a year now.1 The posts on this site have always tended to be a mixture of near-incoherent ramblings, frivolity, and the occasional nuggets of information.  However, since showing off my PlotterBot at the Maker Faire Bay Area 2013 it really feels like that project deserves a website of its own.

While I’ll still discuss my PlotterBot and related experiments here, my goal is to make PlotterBot.com a resource for people who are interested in building an awesome drawing robot of their very own.  If you’ve enjoyed reading about my DrawBot adventures here, I hope you’ll sign up for my Plotterbot.com newsletter and stay tuned for some tutorials on how to build and get the most from your own drawing robot.

Default Series Title
  1. Photo courtesy of cmorran123 []

Arduino Powered Drawing Robot Poll

Arduino Drawing Robots - what would you like to know?

View Results

Loading ... Loading ...

Thanks for checking out my DrawBot Adventure Series.  For the last 13 months I’ve been blogging all about my adventures in learning basic Arduino skills, basic robot building skills, applying my limited soldering skills, talking about my numerous fails and occasional triumphs, in building a drawing robot.  So far I’ve racked up 66 blog posts about drawing robots (which is about 5/month) and shared all of my designs and improvements1 freely on Thingiverse.

But, this is really just me typing up stuff as it occurs to me.  I would rather write a bunch of stuff you want to read.  So, I would really appreciate it if you could take a minute and let me know – what do you want to know about awesome Arduino powered drawing robots?  Please take a quick moment and let me know.  If you don’t see an option above that suits you, please leave a comment.

After you’re done, you may want to check out some of the posts in the series in the links below!  I’d suggest starting here.

Default Series Title
  1. And one epic fail []

This project is not going to overengineer itself

Seriously, why would anyone with hands buy this?

Seriously, why would anyone with hands buy this?

This weekend I worked on my DrawBot.  ((Photo courtesy of Relly Annett-Baker))  I stripped my current DrawBot for parts so that I may build it back together with a PolagraphSD brain/heart.  ((Bart?  Hain?))  Given that there aren’t a ton of parts involved, the process went quickly.  I disconnected the two steppers, pulled all the screws1 and all the nuts and bolts2 from the project.  Right now all that is left of my once mighty3 drawing robot is an Arduino and shield duct taped to a chunk of plywood.

To assemble the new robot into the desired configuration ((Sketch D for those of you playing along at home)) I needed to design:

  • A new PolargraphSD case
    • This new case is about 2/3 the volume of Sandy’s design and has vents along the sides and top to help with heat dissipation.  It can also be assembled without any tools or hardware – with the LCD actually keeping the entire thing together.  At this point I now have three perfectly serviceable cases.  My goal, once the entire robot is put together, is that it look and feel like a finished and polished project – a DONE project.  But, really, I’d like to have it semi-permanently installed somewhere in my house as a drawing appliance.  My prior ‘bot while cool with tons of nifty little hacker cred to it was little more than a chunk of plywood with bits hanging off.  I’d draw something with it, put the board away, then bring it out later.
    • My ideas for building out the robot have changed slightly since designing this case, so I might need to adjust the code and print another one.  The issue now is that the case is designed to be mounted by being bolted into the base of the project box.  However, if I do that a nut or bolt will have to stick through the back of the project which will prevent the paper roll from being able to travel behind the project box.  I figure I could print a new case and bolt it to the side of the project box – but that might interfere with the location of the motors/motor mounts.  I might be able to just ziptie the case to the top of the project box – which might not be good as the bot is expect to shake a little in operation and I don’t want the board shaken unnecessarily.  Frankly, at this point, I think I’ll get everything else situated completely within the project box and come back to figuring out how to mount the case.
    • Although, an idea which just occurred to me is that I could glue some plastic mounts, with captive nuts, into the inside of the project box and bolt the case into that.  Again, this would best be done once all the other issues are resolved.
  • New monofilament spools
    • I had to completely destroy my existing spools to get them off the motor shafts.  For some god-awful reason I printed the two spools at 100% infill creating the sturdiest monofilament spools in existence.  I cannot imagine what possessed me to do this.  They were heavy and impossible to remove cleanly from the motor shafts.  I didn’t get the tolerances right with the prior spools, so I had to force them onto the shafts – but then they were stuck.  I had to use a big pair of wirecutters to chop chunks of plastic off until I could pull the last bits free from the motor.  When I finish designing and printing a new set of spools, I’m going to make sure the tolerances are right before I assemble.  I want the spools to fit snugly becuase I don’t want the motor to slip when it reverses directions – as it will do frequently across a large drawing.
    • I’m still kicking around ideas on how to improve the spools.  My first spools were way too complex and the friction fit wasn’t enough to keep them together.  My second set was too tight and too short.  While I wouldn’t mind a friction fit spool, I need a spool that can’t come apart during operation4 , can be tightened on the motor shaft, and can be removed easily if necessary.  Additionally, I’d like the final spool to be taller – so that there is more of the spool center and less of the flared end of the spool for the filament to wind onto.  The flared end was flared so that the spool could be printed as a single piece.  While this was nice for simplicity’s sake, I found that sometimes the filament line would “ride up” the flared end – which introduces unnecessary error into the process.
    • Looking at the AS220 Labs website page for their drawing robot kit through Archive.org, you will notice that they use a tall spool with a low-friction monofilament line guide.  The benefit of the tall spool is that it can keep a more consistent diameter for more of the filament versus a narrow spool that will accumulate layers of filament more quickly.  The benefit of the line guide is that it forces the robot to maintain the proper distance between the two motors even when the spools are mounted horizontally.  I also happen to like the horizontal spool mount system since it means the motors won’t stick out from the wall quite so much.5
  • A new gondola
  • A way to mount a roll of paper to my project box
    • Besides tearing my drawing robot apart, this is the one thing I did manage to design, print, and put together over the weekend.  Since the paper roll I’m using did not come with a center of cardboard or wood or on any kind of spindle, it is not an immediately mountable thing.  My roll of paper is just that – a really long roll of paper.
    • What I wanted was a modular way to mount a roll of paper to the top of my project box so that it could be adjusted to fit different diameters and widths of paper rolls.  My solution was to print two “caps” to go at either end of the paper roll, with a hole through them to run a long wooden dowel.  The nifty part is where I then bolted two printed plastic tracks to the top of my project box, onto which I can slide a plastic arm which the wooden dowel fits into.  Once the two plastic arms are in place, they can be tightened down onto the plastic track.  The result is a rock solid paper roll mount that lets the paper roll freely turn.  I was so happy with the way this turned out I almost couldn’t see straight.  Yes, it is just a mount for a roll of paper – but it is the most solid and polished way one might hope to mount a core-less roll of paper on top of a wooden box.
  • A new way to mount the stepper motors to the project box
    • Given the amount of time I’ve spent just mounting a roll of paper and obsessing about spools, is it any wonder I haven’t finished thinking about how to mount the steppers?  With the first incarnation of my drawing robot I had designed and printed no less than three completely different motor mounts.
    • I would like the final version of the motor mounts to be easily adjustable, probably using a similar track/mount system that I used to mount the paper roll.  While this kind of solution takes more time to design, the result is a robot that can be quickly and easily improved and adjusted.  As suggested above in the spool section, I am leaning towards mounting the motors so that the shafts are horizontal on the plate of the wall.  This will let the motors keep a slim profile in the project box and allow the use of a tall spool which will enable more even and uniform reeling and unreeling of monofilament.
    • I’m tempted to incorporate a monofilament line guide directly into the motor mount.  In the interests of modularity, it makes sense to keep these things separate, but it might just make sense to do this given the limited space I’ve got within the depth of this shallow project box.6

I’m undecided whether I want to put a cover on the front of my project box.  On the one hand leaving the front of the project box open allows the viewer to peer into the robot and marvel at its simplicity.  On the other hand, without viewing the internals all you would see is a box mounted on the wall, a paper roll on top of that, a power cord coming out of the side, and a drawing pen moving by two almost imperceptible monofilament lines.  Perhaps I should explore this idea in another long winded post?

Default Series Title
  1. Four total []
  2. 12 nuts and four bolts []
  3. Mighty UGLY, that is! []
  4. When one of the friction fit spools failed mid-drawing, it was like watching my robot puke monofilament line.  Frankly, a monofilament puking robot is pretty awesome – just not when it is made from a drawing robot []
  5. If you were betting on me not being able to type an ENTIRE Page of text just on the considerations of the spools in my robot, you would have lost. []
  6. For reference, the box I’m using is less than 2 inches deep. []

DrawBots for the slow learner

Today I bugged several people far more knowledgeable than I about Arduinos, drawbots, steppers, servos, and power supplies.  Here’s what I’ve learned:

Having just salvaged a bunch of parts from some old electronics this weekend, I think I’m ready to pull the trigger and start building this bad boy.  :)

Yay for learning!

Default Series Title

DrawBot, the Adventure Begins

Update:  If you want to find the latest on my DrawBot adventures and build log, check out this link!

Okay!  I think I’m ready to do this!  Is anyone interested in playing along at home?  Let’s give this a whirl!  Here’s what I’m thinking:

  1. Type.  There are at least three distinct drawing styles among the various drawbots.  However, I suspect this is mostly a software issue.  Der Kritzler draws with lines or little cross marks.  The Polargraph draws large “square” pixels.  Harvey Moon’s Drawing Machine draws tight concentric circles.  I’m not sure I have a preference among the various methods and, really, I suspect any differences really lie in the software, not the specific hardware setup.  In any case, for a variety of reasons, explained below, I’m going to try to build a Polargraph based drawbot.
  2. Documentation.  I like the Polargraph for its use of off-the-shelf parts like an Arduino and Adafruit motorshield and for its documentation.  The Make Magazine drawing machine also has a lot of documentation – but it is a very from-scratch design and there are some important images that are broken in the tutorials.  Der Kritzler also has decent documentation, but it appears to be more technical than I’m comfortable with at the moment.  One other huge benefit to the Polargraph is that Sandy Noble is still publishing updates for it – as recently as yesterday.
  3. Parts.  Der Kritzler uses expensive toothed belts, the Polargraph uses (plastic) beaded cord with weights, and Harvey Moon’s drawing machine uses something with weights – probably beaded cord.  The most interesting variation for me is monofilament spool method used by the Make Magazine system.  It has a weight on the “gondola” / printhead itself and winds/unwinds filament off the spool.  The benefit for me with this system is that it won’t have unnecessary hanging and swinging weights associated with each of the two cords.  When one has kids and cats it is best to minimize attractive nuisances.
  4. Sourcing.  Adafruit is out of their motor shields, so it looks like the MakerShed is going to be my best bet for picking up Polargraph-style parts.  An added bonus is that the MakerShed is located in Sebastopol, which is only a two-hour drive from my place in the SF Bay Area.  While I’m not about to drive four hours to save $15-$20 in shipping, it does mean the parts will get here quickly.
    1. Arduino: $30 @ the MakerShed
    2. Adafruit Motor Shield: $20 @ the MakerShed
    3. Stepper motors (one for each side): $10-$38/each.  However, which should I buy?!
    4. Servo motor (for pen lifts):  $15-$20.  However, which should I buy?!
    5. Power supply:  There are lots!  Which should I buy?!  Will I need a second to power the steppers?
    6. Since I’m planning to build a working Polargraph style robot using a monofilament spool rather than beaded cord, I’m going to forgo the beaded cord for the moment.  If I need the beaded cord, I can just print the gear/sprockets later. 1

Anyhow, your input on which steppers, servos, and power supplies is greatly appreciated.

Default Series Title
  1. Don’t you just love having your own 3D printing robot?! []