Printable Prosthetics R&D Q&A FAQ: Part The Third – The Answering

This slideshow requires JavaScript.

Tuesday afternoon I had the good fortune to talk to Professor Jorge Zuniga of Creighton University regarding his insights on printable prosthetics, measurements of uneffected/effected hands, and various important design considerations.  Getting to talk to him really helped crystallize my understanding of the various measurements and the way in which the parts of the printable prosthetic1

  1. Design Ideals
    1. One of the design ideals of the Cyborg Beast prosthetic is to fashion a device that strives for symmetry with the unaffected hand.  Thus, all of the necessary measurements are taken from the unaffected extremity.  This serves two purposes.  First, it allows for the prosthetic to be similar in scale to the unaffected hand.  Secondly, the unaffected extremity tends to be, in most cases2 , slightly larger than the affected extremity.  The size difference may be due to the unaffected extremity being used more, and thus having more muscle mass, or due to the loss of muscle tone and muscle atrophy in the affected extremity.  Either way, a prosthetic designed using the measurements from the unaffected extremity should generally fit the affected extremity.  Since this particular prosthetic design uses velcro straps to fasten to the affected forearm, a prosthetic that is slightly too large can easily be adjusted to fit well by tightening the straps.
    2. Another design ideal is to create a core prosthetic design which works for the vast majority of persons.
  2. Critical Printable Components
    1. A rough sketch of the various parts of the Cyborg Beast prosthetic appear above as “Figure 2.”
    2. Palm.  This is the part that fits over the hand.
    3. Gauntlet.  This is the part that fits over the forearm, between the wrist and elbow.
    4. Four fingers, each comprised of two pieces.  The above simplified sketch only shows the fingers as a single piece.  Do not let my sophisticated drawings fool you.
    5. One thumb, comprised of two pieces.  Like the fingers, the thumb is comprised of two plastic pieces.
  3. Critical Measurements
    1. These measurements refer to the lines labeled in “Figure 1.”  All measurements relate to the unaffected extremity.
    2. F5.  This is the length of the forearm, from the interior of the elbow to the wrist.  While this could be measured along the side of the forearm, it very likely doesn’t matter.
    3. F2 (measured at 1/2 F5).  At a location along the forearm, half way long F5, the width of the forearm.
    4. H1.  This is the distance across the knuckles, from the pinky to the forefinger.
      1. When I lay my own hand flat on a table top, I perceive that an imaginary line drawn through my pinky and forefinger knuckles would end up being not exactly perpendicular to an imaginary line drawn from my elbow to my wrist.  More on this below.
      2. All of that is another way to say that I suspect H1 is not perpendicular to F5.
    5. W.  This is the width of the wrist.  Rather than being strictly measured from either side of the wrist, this measurement appears to best made using the endpoints of the H2 and H3 lines closest to the wrist.
    6. H2 and H3.  H2 is the length from the wrist to the pinky knuckle and H3 is the length from the wrist to the forefinger knuckle.
    7. All other measurements indicated might possibly be useful for refining the design, but they are primarily important for the Creighton University research study purposes.
  4. How Each Critical Measurement Informs Design
    1. F5.  Gauntlet length is not longer than 1/2 F5 and not shorter than 1/4 F5.
    2. F2.  Gauntlet forearm width is F2.
    3. W.  Gauntlet wrist width is W.  Theoretically, if the prosthetic’s palm is scaled up to accommodate the wrist width (W), the affected hand  should fit under and inside the prosthetic palm.
    4. H3 can be used to inform the relative lengths of the fingers to match the overall length of the unaffected hand.   This isn’t strictly required for a functional prosthetic.  As designed, the Cyborg Beast appears to use fingers of equal length.  However, the fingers could be scaled up or down along with the rest of the prosthetic hand.  Alternatively, and as will be discussed below, its possible that the fingers could be designed to be of different lengths.  Prosthetics for young children should contemplate fingers based upon slightly larger, 1-2cm, measurements.  The reason being that they quickly outgrow existing parts.
  5. Functional Design Considerations
    1. Thickness of parts is 3mm – 5mm, 20% fill.
    2. The wrist hinges should line up as exactly as possible with where the user’s wrist bends.  Additionally, the wrist hinge should be perpendicular to the line of the forearm/gauntlet.
    3. There should be about 1 – 2 mm of space between the hinge part on the palm and the hinge part on the gauntlet.  This allows a washer to be inserted for more fluid movement.
    4. Eliminate square corners when possible, as sharp edges can contribute to possbile injury.
  6. Cosmetic Design Considerations
    1. Using the unaffected hand for measurements also allows us to seek symmetry between the hands.
  7. Advanced Considerations
    1. Degree tilt to H1.  As mentioned above, it seems like the “H1” line is not perfectly perpendicular to an imaginary line drawn from my elbow to my wrist.  An educated guesstimate would be that there is a 9 degree tilt to this line.  While existing Cyborg Beast designs do not include this knuckle “tilt,” including this feature in future designs may allow the prosthetic to appear and function more naturally.  However, I don’t know if there’s any real ergonomic benefit to using incorporating this knuckle tilt.
    2. Different knuckle positions for fingers.  The Cyborg Beast has a knuckle “block” that positions the attachment points for all fingers in a straight line.  The reason for this is simple – it’s a lot easier to put one long screw through the entire knuckle block to secure and strengthen all four fingers at once.  At a recent e-NABLE meeting I had the chance to inspect a 3D printed prosthetic which used different knuckle positions for each finger.  Rather than all of the knuckles in a straight line, this model featured each knuckle at a different, and more natural seeming, position.  While this can appear more natural, I’m not sure there’s an ergonomic or aesthetic benefit.
    3. Different finger lengths.  Fingers are different lengths.  The Cyborg Beast, with all fingers having the same relative knuckle positions and same finger sizes, has a more mechanical look than might otherwise be possible.  I don’t know if there’s an ergonomic benefit to using different finger lengths, but this is certainly something to explore.

Based on the above, I think I’m ready to dive back into the OpenSCAD code and work out a parametric gauntlet, fingers, and thumb.  Stay tuned!

Default Series Title
  1. I’m basing my own designs off of his Cyborg Beast designs []
  2. Let’s just choose the large and arbitrary percentage of 95% []

Printable Prosthetics R&D Q&A FAQ: Part 2 – The Wondering

This slideshow requires JavaScript.

In order for me to design an OpenSCAD parametric model that can be adjusted to work for more people, I need to get a better handle on the necessary measurements and how they effect the final design.  Below is my understanding of the necessary measurements and how those measurements necessitate changes in the final prosthetic.

  1. What are the design ideals, besides functionality?
    1. While answering a different question, Marc Petrykowski suggests, “My goal as the designer and printer is to make the hand as near perfect as the other hand so it feels the same to the body and brain, thus they will respond with the effected hand like it was their real non effected hand. Also as stated above, the degrees of flexion and extension and the size/length of the fingers are all incorporated into the final design before the printing the hand.”
    2. Thus, all other things being equal, he tries to craft a hand that is as similar as possible to the non-effected hand.
  2. What are the main parts of the Cyborg Beast?
    1. I’ve drawn a picture with the main features of the Cyborg Beast printable prosthetic.  There are really just a few parts – the palm, the “gauntlet,” fingers, and thumb.  The gauntlet fits over and is secured to the forearm and is connected to the palm by two hinges.  The palm goes over the user’s effected hand and is connected to the fingers and thumb.
  3. What are the necessary measurements?
    1. Marc Petrykowski has provided a set of photos to demonstrate the various measurements.  They appear to all be in millimeters.  Please forgive my layman’s description of these various measurements.  Measurements are taken of the effected and non-effected sides so that a prosthetic can be made that will fit the effected side, but have similar characteristics to the non-effected side.
    2. Flexion angle.  This would be the maximum angle of movement from holding your hand out and then bending the hand at the wrist towards the inside of the wrist.  An example is pictured above as “Figure 1.”
    3. Extension angle.  This would be the maximum angle of movement from holding your hand out and then bending the hand at the wrist away from the inside of the wrist.  An example is pictured above as “Figure 2.”
    4. Knuckle width.  This is the width of the hand at the knuckles.  In Figure 3, you’ll see this as “H1” and “h1.”
    5. Wrist width.  This is the width of the hand at the wrist.  In Figure 3, you’ll see this as “W” and “w.”
    6. Hand measurements.  I’ve identified these as “H1 – H3” and “h1 – h4” in Figure 3 above.
    7. Forearm width measurements.  I’ve identified these as “F1 – F3” and “f1 – f4” in Figure 3 above.
  4. How does each measurement inform the design?
    1. Again, this is merely my guess, impression, or understanding of how each measurement results in a design change.  For the purposes of these diagrams, I’ve assigned each measurement a letter or letter/number combination.  When applicable, I’ve differentiated between the effected (lower case) and non-effected (upper case) hands.
    2. Hand Measurements (Figure 1,blue and green)
      1. Knuckle width, non-effected hand, “H1”.  This is necessary to creating a prosthetic of the size that will match the non-effected hand.
      2. Knuckle width, effected hand, “h1”.  This is necessary to creating a prosthetic of the size that will fit the effected hand inside the palm.
      3. Wrist to pinky knuckle, “H2” and “h2,” the purpose of which is to ensure a prosthetic that will fit the effected hand inside the palm.
      4. Wrist to middle finger tip, “H3” is the overall length of the uneffected hand.  The purpose of this is to create a prosthetic of roughly the same size as the uneffected hand.
      5. Wrist to index finger knuckle, “h3” is for making sure the prosthetic palm will fit around the effected hand.
      6. Wrist to middle3 finger, “h4” is for making sure the effected hand will fit inside the prosthetic palm.
    3. Wrist Measurements (Figure 1, orange)
      1. Wrist width, “W” for the non-effected hand and “w” for the effected hand.  The purpose of the effected hand measurement is to ensure a good fit between the prosthetic palm and the effected hand and the purpose of the non-effected hand measurement is to allow the prosthetic palm to match the non-effected hand more closely.
    4. Forearm Measurements (Figures 1, purple and red)
      1. Various measurements from “F1” (and “f1) just below the wrist to “F4” (and “f4”) which is the width of the elbow. As best as I can tell, these measurements are to ensure a good fit of the “gauntlet” on the effected forearm.
      2. Elbow to wrist, “F5” on the uneffected arm and “f5” on the effected arm.  I’m not sure what the purpose of this measurement is, but perhaps it is to ensure the effected arm with prosthetic is roughly the same length as the unaffected arm.
    5. Angle Measurements (Figures 2, 3)
      1. Somehow the flexion and extension are incorporated into the design.  I do not know how these settings inform the design.
  5. How accurate do these measurements need to be?
    1. Within 1mm, rounded up would be best.  Thanks to Peregrine Hawthrone and David Orgeman for the input.
  6. Questions begetting questions
    1. If you’ve ever made one of these prosthetics, please let me know if there’s anything I’ve gotten wrong.
    2. It appears the measurements effect the design as follows:
      1. Measurements “h1, h2, h3, h4 and w” dictate the size of the palm.  The ratio of the increase/decrease is then applied to all the finger bits.  The measurement “H3” is used to adjust the size of the palm and fingers on the effected arm.
      2. Measurements “f1, f2, and w” dictate the size of the gauntlet.
      3. The additional measurements on the corresponding uneffected arm could be used to make the prosthetic over the effected arm appear more like the uneffected arm.
      4. I’m guessing the other unused measurements (“f3, f4, f5”) are used as part of the Creighton University research study, to measure the physical changes in the extremities before, during, and after use of these prosthetics.
    3. How does the flexion and extension change the design?
    4. Have you printed the Cyborg Beast designs I’ve uploaded?  What are your thoughts?

Thanks for reading and helping!  Comments appreciated!

Default Series Title

Possibly Parametric Prosthetics

Cyborg Beast v7.0

Cyborg Beast v7.0

This last Friday I journeyed to the Autodesk offices at Pier 9 in San Francisco to attend a meeting for e-NABLE, a group devoted to developing, making, and distributing DIY prosthetics.  I have to admit that my own personal interests weren’t necessarily aligned with that of the entire group.  I’m sure those there would forgive my trespasses, but I am far more interested in making the prosthetics and in making it easier for others to make similar prosthetics than I am in the actual mechanics of building an organization that does these same things.

I came away from the meeting having met some amazing people doing amazing things, and with considerably more knowledge than that with which I arrived.1 Just as with the RepRap project, the daunting part of getting started in this field is wondering where the heck to get started.  There are so many different models being developed and so much information, that I just was not sure how to go about actually making such a prosthetic.

As frequent readers of this blog2 know, I like to treat this site as something of an online open notebook where I share my notes, thoughts, and ideas.  Thus, here are the most helpful things I learned as a result of this meeting:

  1. Where to Get Started
    1. Jonathan Schull, an associate professor at the Rochester Institute of Technology, was patient and kind enough to provide me with some pointers on where to get started with producing 3D printed prosthetics.  Jon suggested the Talon Hand for strength, the Cyborg Beast for general use, and the ODY Hand for young children.  The Cyborg Beast instructions refer one to the measurement instructions for the Snap Together Robohand by Michael Curry aka Skimbal.  The process, as far as I understand it, involves measuring the subject’s hand and scaling all of the parts up or down accordingly.
  2. Taking Measurements.
    1. Professor Jorge Zuniga, of Creighton University in Nebraska, is currently using a system for taking measurements that involves taking three photographs of a person’s upper extremities in different positions.  The photographs are taken with a ruler in the image, so that the measurements may be extrapolated.  In talking with Professor Zuniga, I learned that while this is a good way to get a lot of information very quickly (take three quick photographs), it can be labor intensive and time consuming to actually extrapolate the various measurements.
    2. It occurred to me that this sort of problem has actually been solved reasonably well.  Marty McGuire 3 and Amy Hurst created a system for using pictures of hands with standardized objects to extrapolate hand measurements for the creation of custom 3D printed objects.  In the case of their NickelForScale project, they used a photography setup and OpenCV to create custom rings.  While OpenCV isn’t exactly the easiest thing to dive into, one it was figured out could reap huge time savings in gathering the measurements necessary to create custom prosthetics.
  3. Customizing Printable Prosthetics
    1. The multi-step process of taking pictures of a subject’s hands, extrapolating the necessary measurements, calculating the scaling factor, scaling the files up or down, then printing seems fairly involved to me.  While none of these individual steps are actually that complex, it is entirely possible to automate much of this and lower the barrier to getting people involved.
    2. One interesting problem that is created by scaling parts is that certain parts of a design probably shouldn’t be scaled – such as the channels for routing cables or holes for the Chicago screws.4 This inadvertent scaling problem can be completely solved by use of a parametric modelling program, such as (my personal favorite) OpenSCAD.  The “trick” is to scale the model and distribute the various channels for routing cables and screw holes to the appropriate positions to match the new scale – without scaling the diameter of these voids.
    3. One of the really great things about the Cyborg Beast prosthetic model is its extremely realistic and organic appearance.  While OpenSCAD is definitely well suited to creating functional models, it is not as obvious how to create organic seeming solids.  Fortunately, MakerBot’s handsomest and most modest blogger5 posted a very comprehensive tutorial on creating organic solids with OpenSCAD.
    4. Last night I got started on creating a parametric Cyborg Beast model.  While I’m not going for a completely faithful translation of the Cyborg Beast into a parametric model, I’m shooting for a reasonable facsimile of the most important structural and cosmetic features of the Cyborg Beast.  Below is a screenshot of this work in progress.  There’s no thumb joint in this model yet, but it’s coming along.
Cyborg Beast OpenSCAD prototype

Cyborg Beast OpenSCAD prototype

Obviously, there’s more work to do embellishing this model, including adding the thumb joint, hollowing out the underside, adding the knuckle stops for the fingers, and the voids for routing the cables and screws.  However, it’s not that bad for a little bit of quick OpenSCAD hackery.  After that’s done, the various other parts would need to be replicated in OpenSCAD as well.

Cyborg Beast OpenSCAD prototype with original Cyborg Beast overlaid

Cyborg Beast OpenSCAD prototype with original Cyborg Beast overlaid

Default Series Title
  1. That is to say, a lot more than zero! []
  2. Both of you! []
  3. Don’t let the abandoned website fool you – he’s a busy guy moving fast making awesome things []
  4. Head’s up – Chicago screws have a slightly more common and slightly less SFW name []
  5. AHEM *cough* []