Ideal Qualities in a Drawing Robot Pen Holder

Even something as cool as this...

Even something as cool as this…

In my last post I tried to list off as many uniquely designed drawing robot pen holders as I could find.  The reason for documenting them as I did, and pointing out certain design choices, was to help me identify ideal qualities in a drawing robot pen holder.  Before I dive too far down this rabbit hole, I should mention that Stuart Childs has an excellent post on his site discussing the particular challenges faced by those who seek to design a pen holder.

Before we can talk about how what makes a good pen holder, we have to agree on some of the terminology:

  1. Pen holder.  This is just the device that holds the pen and hangs down against the paper for drawing.  While it is sometimes called a “gondola,” I’ll refer to it as “pen holder” in this post.
  2. Cord.  Different drawing robots use different methods for controlling the gondola.  Some use monofilament fishing line (as is my preference), others use toothed belts, some use beaded cords.  For ease of reference, I’m just going to use the word “cord” to refer to whatever method might be used to connect your pen holder to the motor spools/sprockets.
  3. Hanging triangle.  When you draw an imaginary line between the two stepper motors, the cords from each motor meet at a point on the pen holder, forming a triangle pointing downwards.1
  4. Cord convergence point.  The “cord convergence point” is the, sometimes imaginary, point where the two pieces of cord meet to form the tip of the hanging triangle.  Many times the cords don’t actually physically meet.  In those cases, the “cord convergence point” would be the point where the two cords would meet if both cords were perfectly straight lines that continued through their point of attachment to the pen holder.
  5. Up / Down / Left / Right.  These directions will assume your robot is mounted to a wall/large sheet of plywood and you are facing the wall.  ((This could cause a mention of a “pen up” to be confusing, so I’ll try to avoid this phrase))
  6. Forward / Back.  Again, assuming you are facing a wall on which the robot is mounted, forward here would mean going towards the wall and back would mean moving away from the wall.

Without further ado, a list of ideal qualities in a drawing robot pen holder.  While not in any particular order, I’m listing them by number for ease of reference later.

  1. Secure pen holder.  The pen holder must, as you might imagine from it’s title, hold the pen used for drawing.  If it doesn’t hold the pen securely, you’ll get squiggly lines when you don’t want them and really squiggly lines when you only want somewhat squiggly lines.  It is important to note that a pen should be held securely so that it doesn’t move around left/right/up/down or back and forth.  Even if a pen is held securely with respect to left/right/up/down, it could still accidentally be pushed back (or, I suppose get pulled forward?) causing the pen to not touch the drawing surface (or always touch the drawing surface) despite pen lifts.
  2. Adjustable pen holder diameter.  An ideal pen holder should be able to hold a big fat marker or a teeny tiny marker.
  3. Adjustable pen position.   I’ve noticed that some pens are a lot narrower near the pen’s tip.  Thus, some pens will need the pen tip to be closer or farther from the wall, depending upon it’s own characteristics.
  4. Adjustable tilt to pen.  Although markers can pretty much draw at any angle, other pens (such as ball point or gel ink) just won’t work when they’re nearly horizontal.
  5. Incorporate a micro servo.  Single line drawings are really awesome – but with the addition of a micro servo for pen lifts, the robot becomes infinitely more versatile.
  6. “Depth” of pen holder.  Just to choose a term, this would be the distance the pen holder sticks out from the wall.  To strain the metaphor, the “shallower” the pen holder the less it can tilt or tip front/back or up/down.  Conversely, the “deeper” the pen holder, the more it could tilt or tip as it moves.
  7. Distance of center of gravity from wall.  This is an interesting one.  When I started building my robot, I thought the best thing to do was to have the wires leave the project box as close to the wall as possible – so that they would “encourage” the pen holder to hang closely to the wall.  Then I realized that it was actually equally important to achieve a balance of the pen holder.  With most of the considerations here, I can pretty much determine whether it is better to choose a configuration one way or the other.  Unfortunately, with this issue, I can’t decide whether it is better to have the pen holder’s center of gravity close or far from the wall.  Of course, not knowing won’t stop me from pontificating, eh?
    1. First, let’s agree there’s no apparent benefit to having a pen holder designed so that it is “deep” and balanced such that the center of gravity is farther from the wall.
    2. Second, the only apparent benefit I can think of to have a “shallow” pen holder is that it might reduce tipping/tilting somewhat.
  8. Adjustable line attachment points.  As the weight of the pen holder changes, so would it’s center of gravity.  Thus, the attachment points should also change.
  9. Adjustable weight.  Weight is one of the more finicky variables.  If the pen holder is too heavy, the motors will have a harder time, require more power, and be noisier.  If the pen holder is too light, there may not be enough pressure against the drawing surface, the cords may not be held taut (and thus will not behave as the program expects them to), it won’t be as responsive to the tugging of the two cords, and will tend to tip up or down or bind against the wall.
  10. Balanced pen holder.  An ideal pen holder should be balanced so that it doesn’t want to tilt left/right, up/down, or forward/back.
    1. In this video from Darcy Whyte’s site you can see how a pen holder that appears to not be balanced well tends to tilt or tip in response to a change in direction – essentially pivoting around the pen’s tip.  When this happens the pen either doesn’t move as much as the program expects causing certain features to be too short or the lines and curves drawn will appear to have a “stuttering” quality caused by the pen not moving with the cord because the pen tip is binding against the wall and then releasing suddenly and going too far.
    2. I used to think it would be more advantageous to have slightly more weight on the forward side of the pen holder – now I’m not so sure.  What I used to think was that by having the front end of the pen holder heavier, it would somehow exert more force on the wall.  However, there really isn’t any logical reason this should be the case.  Or, until I put a force sensor on the wall and test it, I don’t think I can claim this to be the case.  Watching videos of drawing robots and my own drawing robot in action, I now think that a very light touch on the wall might be more ideal.  Let’s assume any decent pen, especially markers, aren’t going to require a lot of force to leave a mark.  The more force with which the pen is pressed against the wall, the more likely the pen tip is to bind against the wall and draw stuttering lines or lines that are too-short.  Meanwhile, a very well balanced pen holder that is lightly pressing against the paper should not bind at all, resulting in more accurate lines.
  11. Points of contact.  There are any number of different designs for pen holders.  Some of them only touch the drawing surface with the pen tip (like the Der Kritzler, AS220 Labs and GarabatoBot), while others tend to have three points of contact (such as Makeangelo 1 & 2), and some basically have a large wide flat surface which meets the drawing surface (Polargraph, Mr. Drew, and DRBO).  My original mis-use of John Abella’s pen holder design actually had two points of contact – the pen tip and then the sack of batteries that hung from the holder.  A few comments about these different styles:
    1. One point of contact.  This single point of contact will always be either the pen tip or device used to create a pen lift.  Either way, the resulting pen holder can easily tilt left/right, back/forward, up/down, or any combination no matter how well balanced.  If you’re going with a single point of contact design anyhow, I suspect a well balanced and “deep” pen holder might work best.  Here, by deep, I mean a pen holder that sticks out from the wall.  My suspicion is that dialing in the pen’s balance, you might be able to achieve a favorable angle of pen-to-paper.  Having a “deeper” pen holder would allow more room for the robot operator to adjust the cord attachment points.
    2. Two points of contact.  This is just a bad idea – just don’t do it.  The way I implemented this involved a weight hanging below the pen tip.  When the pen moved too fast, the weight would swing causing a pendulum like wobble in the drawing.
    3. Three points of contact.  This seems, intuitively and by observation of Dan Royer’s videos, to be a stable pen holder design choice.  The two extra points of contact (in the case of Dan’s Makelangelo below and to either side of the pen tip) prevent the pen holder from tilting back/forth, left/right, or even up/down.  A three point of contact pen holder could still have a sway left/right problem, but that’s so bad if it means you’re eliminating all that tilting.
    4. Full contact.  This setup, like the three point contact, eliminates any form of tipping and is possibly less susceptible to left/right swaying.  Unlike the single point of contact setup, I think this kind of pen holder might benefit from being shorter (as in doesn’t stick that far out from the wall)

      ...can be drawn by something as ugly as this

      …can be drawn by something as ugly as this

  12. Cord attachment points.  There appear to be about several different ways of approaching cord attachment to the pen holder.
    1. The cord convergence point is exactly at the pen tip.  This kind of setup requires nice big bearings or metal tubes that allow the cord attachment points to rotate around the pen tip.  As the angle where the two cords meet changes, the two cord attachment points rotate to accommodate.  Getting the cord convergence point to be centered on the pen tip is much more complicated to design and expensive to build.  Look to the Polargraph and Ragnar drawing machine for examples of this type of design.  This is particular design choice does not introduce any distortion.
    2. Off-center but close together.   This is a very simple and extremely common method of cord attachment.  Each cord is connected to the pen holder a little to the left and a little to the right of center with the pen usually a little below that.  As long as the two cord convergence points aren’t really far apart, this method will introduce very little distortion.  Additionally, by having the two cord attachment points separate, this kind of pen holder enjoys a little extra stability.
    3. Single cord convergence point, not at the pen tip.  I have not been able to find any pen holders that use this method of cord attachment.  It would basically involve using a single point of cord attachment, either by simply tying the two cords to the same point or by using two pivoting arms as with the Polargraph or Ragnar drawing machine.  Rather than the pen tip being at the same point as the cord convergence, the pen tip would be at some point a constant distance and position from the cord convergence point.  I think the reasons this type of holder isn’t seen is that it is so easy to build an “off-center but close together” style pen holder, any distortion with the “close together” method is extremely small, and having the cord attachment points separate provides the added benefit of a little extra stability against tilting.  However, as long as stabilizers (three point of contact or full contact) are used, there shouldn’t be any reason not to employ a single cord convergence point.
    4. Devil-may-care.  The big Deathstar at the top of the post was drawn by the ridiculously crude pen holder pictured above.  Even with the cord attachment points being 120mm apart, the results are really great.2 Building a pen holder with this design choice will introduce some distortion.  It’s unlikely someone is going to be as foolish as I was to build a pen holder with cord attachment points as wide as 120mm.  However, even in such an extreme case, the distortion was shockingly small.
  13. Location of weights.  While I haven’t done any tests on this, I’m fairly certain that having the weight of the pen holder as tightly packed around the cord attachment point as possible is most advantageous.  The last thing you want is for an off-center weight to cause the pen holder to sway during a direction change.

Enough talk!  I think it’s time I start actually designing a pen holder!

Default Series Title
  1. This is a term I only learned today from the context of Sandy’s comment in an earlier post.  This term is just so perfect and useful in describing drawing robot set-ups, I just have to include it here. []
  2. Unfortunately, the Sharpie started to run out of ink about 2/3 through the picture, which does detract from the drawing somewhat. []

A Study of Drawing Robot Pen Holders and Design Considerations

MakerBlock's Cardboard Gondola, Annotated

MakerBlock’s Cardboard Gondola, Annotated

The pen holder for a drawing robot is one of the most deceptively simple aspects of the entire machine.  Stripped down to the most basic elements, the pen holder is nothing more than a small device used to connect to both cords from each motor to the pen.  However, there are a number of extremely important, and subtle, design considerations that are not immediately evident.

Since Hektor’s debut in 2002, and arguably as far back as SIGGRAPH in 1988, people have been working on vertical pen plotters.  In that time

I guess I should start this post with a discussion of the different gondolas out there.

In no particular order they are:

  1. Binder clip.  One version of the AS220 DrawBot used a simple binder clip holding a pen as the gondola/pen holder.  It doesn’t get a whole lot simpler than that.  It appears from the video associated with this post that the pen is held on a somewhat rigid rail.  Similarly, Dustyn Roberts’ SADBot also used a big huge clip as a pen holder/weight and James Provost’s InternBot used a few binder clips.  However, the most hacked together system is easily Josh Myer’s Muralizer which consisted of a lump of Play-Doh enveloping the pen.
    AS220 Labs Pen Holder

    AS220 Labs Pen Holder

    SADBot Pen Holder

    SADBot Pen Holder

    Muralizer Pen Holder - Powered by Play-Doh

    Muralizer Pen Holder – Powered by Play-Doh

  2. Clip Stabilizer plus Binder Clip.  The “production version” of the AS220 DrawBot included lasercut spool parts, motor mounts, and a “clip stabilizer.”  The setup described in the assembly instructions appears to indicate that the pen can be held reasonably steady using this design.  However, having spoken to Shawn Wallace about these designs, he advised that this is really a non-optimal setup that has a lot of wiggle to it.
    AS220 Labs Clip Stabilizer Design

    AS220 Labs Clip Stabilizer Design

    AS220 Labs Clip Stabilizer plus Binder Clip

    AS220 Labs Clip Stabilizer plus Binder Clip

  3. Der Kritzler by Alex Weber.  This “gondola” made use of several lasercut parts creating a long wooden “cage” which held the pen in place along with a servo activated pen lift.  I can’t quite tell how the “pen lift” operates, whether it retracts the pen itself or whether it pushes something in front of the pen’s tip preventing the pen from leaving a mark.  Either way, this drawing robot pen holder has a feature that I never really appreciated until now – the wooden cage is suspended by two wooden “wings” which keep the point of attachment to the toothed belt at it’s midpoint.  I’ll discuss this feature more later.

    Der Kritzler Pen Holder

    Der Kritzler Pen Holder

  4. My first gondola was one of my own design and it was a miserable failure.  The central ring was too large to accommodate the marker pens I was using.  Also, it wasn’t heavy enough to make the monofilament hang in a straight line.

    Crappy Gondola

    Crappy Gondola

  5. Sandy Noble’s Polargraph.  Sandy has probably logged more hours with his drawing robots than just about anyone else.  So, when he uses a particular setup for his pen holder, there’s got to be something to it.  The interesting features of his gondola are that the weight is concentrated around the pen tube by use of several large bearings and, as with several other designs here, the cords to the pulleys are centered over the holder’s center of gravity.  After I published this post, I found a printable Polargraph-style pen holder by Lanthan on Thingiverse.

    Sandy Noble's Polargraph Gondola

    Sandy Noble’s Polargraph Gondola

  6. John Abela’s Gondola.  I used John’s designs with my first drawbot, but without the blank CD.  For the first time today I noticed that all of John’s pictures show the printed gondola glued to a blank CD for stability.1 When I used his design I just tied the top of the printed gondola to the monofilament line and added a ziplock baggie with dead batteries for weight.  The result was a reasonably decent gondola that was pretty finicky.  If the robot started drawing too close to one side or the other, the holder tended to twist and the pen made little to no contact with the paper.  I can see why the blank CD was such a good idea.

    John Abella's Polargraph Gondola

    John Abella’s Polargraph Gondola

  7. Dealywhopper’s Dr. Scratchy Polargraph Gondola.  Similar to John Abella’s Polargraph derivative is Dealywhopper’s Mr. Scratchy setup.  It’s an amusing mixture of high tech 3D printed parts and hot glue hackery.  There’s just something about its simplicity that really tickles me.  Print the part, add some glue, slide the binder clip into the groove, glue the holder, some pennies for weight, and a micro servo to an old CD and you’re done.  The interesting thing about this one is that the majority of the weight is off-center towards the drawing surface.

    Dealywhopper's Dr. Scratchy Polargraph Gondola

    Dealywhopper’s Dr. Scratchy Polargraph Gondola

  8. Dan Royer’s Makelangelo.  In the spirit of open source Dan Royer has been working on and blogging about his Makeangelo and Makelangelo 2 robots.  Dan’s Makeangelo is, like my first Polargraph derivative ‘bot, based on an Arduino Due and Adafruit Motor Shield.  If you check out his Youtube channel, there’s about two dozen uploads documenting Dan’s experiments with different pen holder configurations.  The version he’s shipping with his latest kit, which you can see below (the image is also a link to the video), uses three lasercut pieces to hold a pen and allow for an interesting pen lift.  Although you can’t see it in the image below, there is a third lasercut piece which appears to slide forward and backwards with the micro servo.  In the forward position it would push the pen holder top off the wall.  The holder includes two rows of holes along the top for attaching the motor strings above the holder’s center of gravity.

    Makeangelo 2 New Pen Holder

    Makeangelo 2 New Pen Holder

  9. Drawing Machine by Ragnar.  This drawing robot by Ragnar, a co-founder of Havtek, is exceptional for its incredibly high quality drawings and bespoke pen holder.  Ragnar provides a detailed description of his setup in two posts.  This may be the single most beautiful pen holder of the bunch.  With heavy brass pieces, there appears to be no further need for any additional weights.  As you’ll notice from his other photographs, the two brass arms are in the centered along the body of the pen holder.  This pen holder looks like each of the parts came off of an assembly line just destined to be part of an awesome drawing robot.

    Ragnar's Drawing Machine Pen Holder

    Ragnar’s Drawing Machine Pen Holder

  10. GarabatoBot (aka DoodleBot) by Made by Miguel Ángel de Frutos.  This is one of the most interesting drawing robot pen holders ever made – if for no other reason than it integrates almost all of the critical components into the pen holder itself.  As I recall, several other projects had tried to use integrated motors but found that the resulting pen holder/robot combination was too heavy to lift itself.  Miguel’s design is well documented on his site and the printable parts are shared on Thingiverse.

    GarabatoBOT robot by  Miguel Ángel de Frutos

    GarabatoBOT robot by Miguel Ángel de Frutos

  11. Harvey Moon’s Drawing Machine.  What makes Harvey Moon’s drawing robot pen holder particularly interesting is his choice to have the pen actually move up and down.  The pen holder incorporates a second non-drawing point and a rack-and-pinion system to advance and retract the pen.  I have to admit, I really like the aesthetic quality of having a no-foolin’ pen lift.

    Harvey Moon's Drawing Machine Pen Holder

    Harvey Moon’s Drawing Machine Pen Holder

  12. Darcy Whyte’s Mr. Drew.  Darcy Whyte aka Mambohead has been blogging about his own Polargraph variant2 for quite some time and worked through several different pen holders, including one designed specifically for a smaller drawing robot.  His designs use layered clear lasercut acrylic to build up a gondola which incorporates a springy clamp for holding the pen in place.  This video gives a really good tour of Darcy’s pen holder and explains several of the more important features.
    1. There are two pieces of threaded rod on either side of the pen holder.  By stacking pieces of acrylic you can adjust the position where the wire connects to the gondola.
    2. There is a pen clamp using a rubber band, as indicated above.  The best part about this clamp is that he uses varying pieces just below the pen to adjust the tilt on the pen, in case it requires a slight angle to draw on a more vertical surface.
    3. There is a third piece of threaded rod at the bottom of the gondola where additional weights can be attached.
    4. The clear acrylic and strategically placed holes in the top of the pen clamp allow the operator to see where the pen contacts the paper.

      Darcy Whyte's Mr. Drew Pen Holder

      Darcy Whyte’s Mr. Drew Pen Holder

  13. Stuart Childs DRBO.  Stuart Childs sells a lasercut Polargraph-compatible robot kit.  Once assembled it is a stand-alone drawing robot.  The most interesting difference between Stuart’s robot and Sandy’s setup is the construction of the pen holder.  I’ve included a picture of the front and back of the pen holder below to give you an idea of what it looks like.  Per Stuart’s comment below, his own gondola was inspired by Darcy’s Mr. Drew.3 For a better idea of how it is assembled and how it operates, you should definitely check out Stuart’s excellent step-by-step assembly photographs.  This pen holder has a small circular lasercut piece which attaches to the business end of a micro servo, to push ahead of the pen’s tip – allowing for “pen lifts.”  There are two features in particular that I really like.
    1. First, I like how the “arms” which connect to the motor cords can swivel.  This is a very clever way around several potential problems.  When tying the two cords to points on the pen holder, there are issues with placing them too far or to close together.  Too far apart makes the pen holder extra stable, but the image drawn are distorted.  Too close together minimizes distortion, but the pen holder can start to swing like a pendulum, causing wibbly wobbly lines.  Additionally, if the cords from the motors have too much “twist” in them, the entire pen holder can actually be turned sideways and will stop drawing entirely.  (I suspect just about any Polargraph-style pen holder which uses a large wide flat surface would be sufficient to combat the cord twisting/torquing problem.)  Looking back to the AS220 Labs pen holder, you can see that it appears to use two rigid rails instead of string.  The arms in Stuart’s robot essentially allow the cords from the motors to act as if they’re very close together – but probably wouldn’t allow much in the way of pendulum action.
    2. Second, I appreciate his spring-loaded pen holder.  This feature would allow his robot to accommodate a variety of pens or drawing implements.  While a rubber band would obviously work as a quick hack, a true metal string would stand up to repeated use.

    Stuart Childs’ DRBO Pen Holder

    Stuart Childs’ DRBO Pen Holder

  14. DrawBot Quick Change Pen Holder by UechiMike.  Thingiverse user UechiMike designed his own pen holder which he identified as a derivative of Dan Royer’s Makeangelo.  You’ll notice that UechiMike’s pen holder, like the DRBO immediately above, uses a rubber band in place of a spring as a way to accommodate a variety of pen sizes.  UechiMike’s pen holder has holes on either side for routing the monofilament wire which, it looks like, are tied around.  I have to wonder if the holder has any problem with torquing.  You’ve got to love the recycling of dead AA batteries here.  The only “gripe” with the design is that there isn’t any room for a  micro servo to for pen lifts.

    DrawBot Quick Change Pen Holder by UechiMike

    DrawBot Quick Change Pen Holder by UechiMike

  15. Screwless Sharpie Holding Gondola by Bluemetal.  Simple and sweet, this design doesn’t seem to have any weights or moving parts.  Just a bit of printed plastic and a push-fit hole designed for Sharpies.

    Screwless Sharpie Holding Gondola by Bluemetal

    Screwless Sharpie Holding Gondola by Bluemetal

  16. MakerBlock’s Cardboard Gondola.  Okay, now the most intricate, well designed, and durable feat of engineering ever to meet a marker.  My very own cardboard gondola.  As you can see, I slapped four AA batteries and a pen to a jagged piece of cardboard.  While it worked for several drawings4 it’s clearly nonoptimal.  The cord attachment points are wide enough to cause distortion and not well balanced enough to prevent swinging.  The only reason I slapped this together was that I was anxious to put my drawing robot to work.

    MakerBlock's Cardboard Gondola, Annotated

    MakerBlock’s Cardboard Gondola, Annotated

Frankly, my crappy gondola is a testament to the how forgiving DrawBot setups are.  Even though I’ve been admiring drawing robot setups for probably a year and a half now, I’ve really only started to understand some of the design decisions.  I’ll go ahead and publish this post5 and get to work on the next one laying out what I’ve learned from the different pen holders featured above.

Default Series Title
  1. Face palm []
  2. How awesome is it that Darcy worked with Sandy on pen holder designs?! []
  3. TeamTeamUSA created his own variation on Stuart’s pen holder and made the plans freely available on Ponoko []
  4. Four Deathstars and a Firefly class starship []
  5. I’ve been sitting on it now for a few days []

DrawBot – Printed Parts

So far I’ve got three types of printed parts:

  1. Spools
    1. These spools hold the monofilament and are friction fit onto the motor shaft.  You can check out the designs on Thingiverse.
  2. Motor Mounts
    1. The Thingiverse page actually has a lot of information about the motor mounts.  They’re designed in OpenSCAD and are mostly parametric.  Since I’m mounting these motors inside a box, the mounts are designed to go into the corners of the box.
  3. John Abella’s Gondola
    1. I haven’t hooked everything up yet, so I don’t know how well this will work.  I can’t wait to find out!
  4. Arduino Mount
    1. I’m kicking around some ideas for how this would work.  Ideally, I’ll end up designing a bracket that the Arduino and motor shield can just snap into.
Default Series Title