Vacuum Former – Ideas to Improve Vacuum Former

This is less a post and more about just brainstorming some ideas about how to improve my vacuum formed objects:

  • Main holes, plus smaller holes
    • Perhaps additional, smaller, holes in the center of the vacuum former would allow for additional suction and more detail.
  • Taping unused holes
    • My thinking is the most useful holes in the vacuum former are those that are just under and immediately around the objects being formed.  Other holes beyond those immediately around the object are probably something of a waste of suction power.  Perhaps by placing tape over the extra holes, it would apply a greater vacuum force on the plastic immediately over the object, leading to a more detailed form.
  • Rigid top
    • When the vacuum is turned on, it causes the bottom of the bucket (or, rather, the top surface of the vacuum former) to bow in slightly, going concave.  This hasn’t been a big problem for anything I’ve formed thus far, so I’m not that worried about it.
  • Build a dedicated vacuum box
    • There are tons of plans out there for flat boxes with holes on top and a round hole for a vacuum attachment.  There’s no doubt in my mind, that a dedicated flat vacuum box for a vacuum former would work better than the bucket top I’m using.  That said, the bucket setup is working just find for now.  :)
  • Plastic frame holder and/or a dedicated oven mitt
    • I’m still using mini binder clips and a bent coat hanger.  This works just find for my purposes right now.  However, my fingers get pretty toasty as I’m holding the coat hanger.  Right now I’m just using a large sheet of vinyl shower liner to insulate the coat hanger handle and protect my hands (a little) from the heat.  I’m going to pick up an old oven mitt I can dedicate to this project.  It would be nice if I had a better way of holding the plastic than a coat hanger, but it’s the best I have right now and probably better than most ways for holding a circular piece of plastic.
    • Also, as a public service announcement, if you get a chance, pick up a foot wide sheet of the vinyl shower liner.  It’s cheap and you’ll find all kinds of uses for it.
  • Virgin plastic
    • Plastic plates are great because they’re free/cheap depending on how you use or source them.  But, they’ve already been heated, molded and formed.  That means that when you re-heat and re-mold and re-form them, they’ll be more brittle than they used to be.  I haven’t priced out plastic sheets for vacuum forming, but they can’t be that expensive.
  • Better designed forms
    • I managed to design a 3D printable arc reactor with “draft,” so that the molded parts would release easier from the molded plastic.  I used a draft angle of 10 degrees, which seemed to work pretty well but still required a little effort to remove the part from the molded plastic.  However, I think I’ll design my next part with even more draft; perhaps as much as 15 or 20 degrees.
May 10, 2017 | Comments Closed

Vacuum Former – Things to Form

DIY Vacuum Formed Arc Reactors

DIY Vacuum Formed Arc Reactors

Here’s a list of things I’m thinking about vacuum forming:

  • Arc Reactor parts
  • Star Trek communications badge
  • Cell phone case or cell phone stand
  • Hair clip accessories
  • Replacement emblem
  • Goggles
  • Paint or small part tray
  • Molds from play dough, sculpey, or model magic
  • Molds for soap, candy, ice, lollipops, or popsicles
  • Light switch cover, electrical outlet cover
  • Christmas ornaments
  • Lego toy car shells
  • Rocket nose cone and fins
  • “Shrink wrap” parts to make them smoother and/or watertight
| Comments Closed

How to Use a Vacuum Former

This is the second post in a short series about vacuum formers.  You can start with the first post about how to make your own inexpensive and easy to use vacuum former or skip to the bottom of this post with a list of all of the posts in this series.

  1. Theory

    This slideshow requires JavaScript.

    1. I discussed the theory behind a vacuum former in the prior post.  This post is really about how to actually use a vacuum former in conjunction with a heat source.
  2. Parts

    This slideshow requires JavaScript.

    1. “Buck”
      1. The things you’re going to create molds of with your vacuum former are called the “bucks.”
    2. Wire coat hanger
      1. The coat hanger will be bent out of shape and won’t be usable for hanging clothes after this.  A coat hanger from your local dry cleaner would do just fine.
      2. The good news is that this is the only thing, besides the consumable plastic plates, that you can’t put back into its ordinary service as soon as you’re done vacuum forming.
    3. 4 or more binder clips
      1. Pretty much any size binder clips would work, as long as they can get around the thick gauge wire of the coat hanger.  I only had four on hand, (which is probably the minimum necessary) but the more the better.  As you heat the plastic, it will contract and deform.  The more clips you have, the more circular you can keep the plastic as you lay it on top of the object.
    4. Oven mitt
      1. I used a cotton oven mitt that has a silicone rubber grip.  This is probably overkill, but better safe than sorry.
      2. Everything you’ll be touching with the oven mitt will be cool to the touch within about a minute of taking it out of the toaster oven.  I’m pretty sure a thin towel which has been folded over several times would work just fine.
    5. Toaster oven
      1. Preferably one that can do small round pizzas.  If you’re out shopping for one, try and find one that will fit the 10″ diameter plastic plates.  You can find a cheap toaster oven for about $30 on Amazon and about $15-20 on Craigslist.  If you’re short of funds, I’m pretty sure garage sales or Goodwill would have a bargain.
      2. Out of an abundance of caution, I was using my toaster oven outside on the off-chance that heating the plastic was giving off some undesirable fumes.  I’m also utilizing a used toaster oven donated by my brother.  I’m pretty sure the process of heating a few pieces of plastic in the toaster oven don’t make it unsafe for cooking food, but again, I’m erring on the side of caution here.
      3. There’s nothing special about the toaster oven; it’s nothing more than a convenient and cheap heat source.  If you were a more daring sort you could probably use your standard kitchen oven.  I suppose in a pinch you could also use a cheap heat gun, but I haven’t tried this yet.
    6. Pliers (Optional)
      1. I got these out to help shape the coat hanger.  In the end, I didn’t use it very much and it probably wasn’t necessary.
  3. Consumables
    Round plastic plates, 10 - 1/4"

    Round plastic plates, 10 – 1/4″

    1. Round plastic plates (~10″ diameter, without dividers?)
    2. These are just the bulk plastic plates we had left over from Party City.  Next time I’m there, I’ll check and see just what kind of plastic they’re made of.  Their website suggests they carry plastic plates with diameters from 9″ to 10.25″ to 10.5″.  The plates I had were 10.25″ and they worked out really well.  You can probably find a pack of 50 plates for less than $10.  You might be able to do even better by hitting up a dollar store.
  4. Make the Plate Holder

    This slideshow requires JavaScript.

    1. Using your hands or a pair of pliers, bend the coat hanger as pictured.  The goal is to get it to fit around the underside of the rim of the plate.
  5. Clip the Plate to the Plate Holder

    This slideshow requires JavaScript.

    1. Using four or more small binder clips, clip the coat hanger to the paper plate.  Put two clips on either side of where the coat hanger handle meets the plate.  Put the other two clips approximately 180 degrees from the first two clips.  If you have more than four binder clips, they would be helpful since the plastic will pull away from the frame as it heats up.  (I only had four on hand)
  6. Turn on the Toaster Oven
    1. Remove all the racks, except for the bottom drip tray, from the inside of the toaster oven.
    2. When it’s empty, turn it all the way up.
  7. Ready the Vacuum Former
    1. Set up your vacuum former as close to your heat source as is practicable.  You want to be able to transfer the molten plastic plate to the vacuum former as quickly as possible so that it doesn’t cool down in transit.
  8. Prepare Buck and Turn on Vacuum Former
    Vacuum former at the ready

    Vacuum former at the ready

    1. Organize the bucks (the things you want to mold) on top of the vacuum former, then turn on the vacuum.
    2. You may notice the vacuum pushes or pulls some of the objects out of the way.  Just rearrange them as necessary.  I try to place things so that they’re surrounded by the holes in the top of the vacuum former.
    3. Basically, you want the vacuum pulling on the hot plastic plate, but not sucking air freely from around it.  If the holes in the top of the vacuum former are spaced out way outside the perimeter of the plate, you’ll want to cover those holes up with some tape.  Regular masking tape worked just fine for me.
  9. Heat and Vacuum!

    This slideshow requires JavaScript.

    1. Put on your oven mitt, open the toaster oven, and hold the plate in the oven near the top heating element.
    2. The plates I used went through several physical changes before they were ready.  First they softened a little, then they actually flattened all the way out, then then pulled away from the wire frame, then, finally, the plastic got very droopy.  This whole process took less than a minute with the oven at full power.
    3. Once the plastic is nice and droopy, pull the frame out and place it on top of the vacuum former.
    4. The vacuum should pull the hot plastic around your objects.  After a few seconds the plastic should no longer be flexible and warm.  Once it’s cool, turn off the vacuum.

That’s it!

May 7, 2017 | Comments Closed

Art Docent Program – Self Portraits, 4/20/2017

Easy self portraits for kids

April 20, 2017 | Comments Closed

How to Make a Vacuum Former

First, a huge thank you to Airship Noir and their Maker Faire Kansas City 2016 project, “Make Your Own Vacuum Formed Steampunk Goggles.”  They were kind enough to post pictures and instructions about how they made an incredibly cheap, but effective, vacuum former.

Inspired by their project, I wanted to pay-it-forward and help others build their own vacuum former.  Here’s how I built mine:

  1. Theory
    1. A “vacuum former” is a device which allows you to create thin plastic molds of objects by heating a sheet of rigid plastic until it is very malleable, placing it over an object, and applying a suction to pull the flexible plastic around the object.
    2. The plastic shell can be used for a variety of purposes such as actual tools, creating reusable molds, or just a simple form fitting shell for another project.
    3. This set of instructions will teach you how to create a suction device for use with a heat source of your choice.
  2. Parts

    This slideshow requires JavaScript.

    1. Home Depot “Bucket Head” ($23)
      1. I had no idea this thing existed until I saw Airship Noir’s post.  It’s basically a vacuum that clamps onto a bucket, turning it into a cheap low-power shop vac.  I believe “Bucket Head” is the Home Depot branding for this, but that you can find alternates under the title of “Power Head.”
    2. 5 Gallon Bucket ($5)
      1. I bought a Home Depot brand bucket for this exact task.  Although I have other 5 gallon buckets, it was worth the $5 to me to make sure I had something that would easily attach and detach from the vacuum top.
    3. 1/2″ wooden dowel, 4′ in length ($2)
      1. My own design uses 3D printed parts, a length of a 1/2″ wooden dowel, and a little hot glue.  However, you can substitute whatever you have on hand.  The Airship Noir vacuum former used wood shims, some nuts and bolts, and PVC pipe.
  3. Tools
    1. Chisel
    2. Drill and 1/8″ drill bit
    3. Hot glue gun / hot glue
    4. Ruler
    5. Pen / pencil
    6. Hacksaw
    7. Sharpie
    8. Masking tape
  4. 3D Print Parts

    This slideshow requires JavaScript.

    1. You can download all the 3D printable parts from Thingiverse.
    2. Print one vacuum cork.  This will just be placed into the vacuum where the hose would normally go.  This will cause the vacuum to suck air through the bottom of the bucket.
    3. Print two dowel caps.  These will go on either end of a short length of wooden dowel, to keep the “float” inside the vacuum from falling into the vacuum.
    4. Print three bucket attachments and three “toes.”  These will be used, with wooden dowels to elevate the bucket off the ground.
    5. Print the PDF of a 1″ grid on paper.  This is actually a 1/2″ grid, with bold lines forming the 1″ grid.  I searched for more information about optimal hole size and placement, but didn’t find anything dispositive.  I think as long as you get close, you’ll be fine.
  5. Cut Wooden Dowels
    1. Use the hacksaw to cut three pieces of wooden dowel to approximately 8″ each.  These will become the feet for the bucket.
    2. Cut a fourth piece of wooden dowel to approximately 6″.  This will be used to keep the vacuum float from falling into the vacuum, when the bucket is turned upside down.
  6. Prepare the Bucket

    This slideshow requires JavaScript.

    1. Turn the bucket upside down and, carefully, use a chisel to remove as much of the raised areas at the bottom of the bucket.  Working slowly and carefully, it took me about 30 minutes to move the rim at the bottom of the bucket and all the little raised areas.
  7. Add Feet to the Bucket

    This slideshow requires JavaScript.

    1. When the “Bucket Head” attachment is on the bucket, the top will be rounded.  However, we’re going to need to turn the entire thing upside down to use the bottom of the bucket as the surface of our vacuum former.  This means we’ll need to raise the vacuum top of the bucket off the ground so that it can stand flat – and so we can access the power switch.
    2. I designed the three bucket attachment parts so that they will slide snugly into the rim under the bucket.  The rim has approximately 24 little fins under the rim.  Place each of the three feet equally around the bucket – approximately 8 fins apart.  Mark the outline of the part on the bucket with a Sharpie, remove the part, add hot glue, and slide the part back into place.
    3. Add a little hot glue to the end of each of the three 8″ wooden dowels, then some hot glue to the inside of the “toes,” then slide the gluey end of the dowel into the feet.  You should end up with three short “drumsticks.”
    4. Don’t glue these into the attachments at the bucket sides.  The attachment and bucket feet parts were designed to be as minimally obtrusive to the function of the bucket as possible.  If placed properly, they shouldn’t interfere with the handle or bucket usage.  The newly formed feet can be placed into the holes in the bucket attachments when you’re ready to start vacuum forming – and placed back inside the bucket for easy storage.
  8. Drill Holes

    This slideshow requires JavaScript.

    1. Print the PDF of 1″ ruled grid paper from the Thingiverse page, courtesy of Kent State.  Center the paper on the bucket, then tape it down.
    2. Drill 1/8″ holes 1″ apart along the grid.
    3. A word about these holes.  The more holes you drill, the more holes you might have to cover up when making parts later.  However, the more holes you drill now, the bigger the parts you can make later.  It’s a little bit of a trade off.
    4. Once the holes are drilled, use the chisel to remove the burrs off the bottom of the bucket.  You don’t need to remove the burrs from the inside of the bucket, but I did to keep the inside of the bucket as clean and useful as possible.
  9. Raise the Float

    This slideshow requires JavaScript.

    1. Underneath the vacuum top there is a plastic cage surrounded by the filter, held in place by a big rubber band.  Remove the rubber band and filter and you’ll see a little plastic cup that is designed to act as a “float” inside the cage.  If you turn the vacuum upside down, the float will fall against the vacuum – and would prevent it from working.
    2. Holding the vacuum upright, insert the 6″ length of wooden dowel through the plastic cage and above the float, pushing it against the bottom of the cage.  Use the plastic dowel caps to hold the ends of the dowel in place so it won’t slip out or rattle.
  10. Completed bucket vacuum former!

    Completed bucket vacuum former!

    Put it All Together

    1. Place the Bucket Head on the bucket.  You may need to rotate the Bucket Head slightly to make sure you can insert the feet into the plastic parts glued to the sides of the bucket.
    2. Insert the feet into the holes in the bucket attachment parts.
    3. Invert the bucket and you’re done!

I’ll do another post soon about how to actually use the device.  If you’ve read the Airship Noir post, you know the basic steps are to place things on the bottom of the bucket, heat a plastic plate with a toaster oven, and lower the heated plate over the things you want to mold while the vacuum is one.

February 19, 2017 | Comments Closed

Art Docent Program – Square One Art Project, 2/16/2017

February 15, 2017 | Comments Closed

SMUD Tiny House Competition 2016

The Sacramento Municipal Utility District sponsored a Tiny House Competition, modeled on the U.S. Department of Energy Solar Decathalon, started in October of 2014 and presented to the public on October 15, 2016.  The goal was for each team to design and build a zero net energy house on wheels for 100 – 400 square feet, with up to $25,000, using green building techniques and sustainable living.

I’ve been interested in tiny houses since first seeing some of the Tumbleweed homes at Maker Faire many years ago.  In the last few years it seems like the idea of tiny homes has really exploded – with multiple television shows devoted to the design, construction, and purchase of very small homes.

The event this weekend was held in a parking lot at the Cosumnes River College in Elk Grove from 9am through 4pm and included music, prizes, food trucks, and a little bit of windy and rainy weather.  Despite the seeming niche appeal of the competition and inclement weather, the crowds and lines to each the houses were unreal.  People were waiting 45 to 60 minutes to see the inside of these houses!  Since each house is so small and only reasonably accommodate a few people at a time, the lines moved slowly.  While we were able to talk to a few people from the various colleges and teams, we didn’t get a chance to see the inside of any of the houses.

A big part of the competition was “communication” including documentation, brochures, and educational videos.  Unfortunately, most of the tiny homes either didn’t have or had run out of their materials by the time we arrived around noon.  Some of the teams had websites or Facebook pages for their projects, while others had a few posts on their college’s pages.  Hopefully the teams will post more information and pictures in the weeks to come.  (More than one team suggested they’d get right on it – after they caught up on their homework…)  Here’s the links I was able to find:

  1. CSU Fresno
  2. Laney College
  3. College of the Sequoias
  4. UC Berkeley
  5. Cosumnes River College
  6. Santa Clara University
  7. San Jose City College
  8. UC Santa Cruz & Cabrillo College
  9. CSU Sacramento
  10. CSU Chico


October 16, 2016 | Comments Closed

Art Docent Program – Tessellations, 10/13/2016

October 13, 2016 | Comments Closed

Art Docent Program – Textures and Patterns, 09/22/2016

September 22, 2016 | Comments Closed